
Proceedings of the 7 th International Conference on Applied Informatics
Eger, Hungary, January 28–31, 2007. Vol. 1. pp. 91–98.

Finite automata in the mathematical
theory of programming∗

Valerie Novitzká, Daniel Mihályi, Viliam Slodičák

Technical University of Košice
e-mail: {valerie.novitzka,daniel.mihalyi,viliam.slodicak}@tuke.sk

Abstract

Finite deterministic sequential and tree automata are well-known struc-
tures that provide mechanisms to recognize languages. We extend these au-
tomata to typed ones over our type theory of solved problem enclosed in
classifying category. The main idea is that symbols of input alphabet bring
some additional information, types of symbols, and this information is ap-
pended to the states of automata. Typed sequential automata can serve for
analyzing well-formedness of terms and typed tree automata can be used for
evaluation of typed terms of our type theory. We show how typed automata
can be depicted in the category Set of sets and what is the relation between
our type theory and typed automata in categorical terms.

Keywords: automata, category theory

MSC: 03D40, 18A15

1. Introduction

The aim of our research is theoretical description of program development pro-
cess. We consider programming as logical reasoning in some intuitionistic logical
system over a type theory for a given solved problem and we formulate them as
fibrations in category theory [7]. In this paper we present a part of our results. We
use Church’s type theory defined in [6] that is enclosed in a classifying category
with variable declarations as objects and typed terms as morphisms. Another ap-
proach to type abstractions can be found in [8] and more practical handling with
types is in [9].

Another useful mechanism for handling terms provide finite automata. In our
approach the variables, function symbols and terms have types, therefore we need
to introduce types into automata. We follow the way sketched in [4, 3]. The main

∗This work was supported by VEGA Grant No.1/2181/05: Mathematical theory of program-
ming and its application in the methods of stochastic programming.

91

92 V. Novitzká, D. Mihályi, V. Slodičák

idea of the authors is that the input symbols bring some additional information
enabling the automata to recognize internal structure of input strings. That means,
the input symbols not only follow each other but get an information of the structure
of substrings and so force the automaton to respect some rules. Such typed au-
tomata were defined for recognizing languages with structure. For our purposes the
additional information brought by input symbols are types and they are appended
to every state of typed automaton.

Typed sequential automata can serve for checking well-formedness of typed
terms and typed tree automata can be used for their evaluation. Typed automata
can be depicted in the category Set of sets and we define a mapping that assigns to
every typed term in classifying category a typed finite sequential/tree automaton
accepting it in the category Set.

2. Type theory and its model

Church’s type theory can be enclosed into classifying category Cl(Σ) over a
signature Σ = (T, F), where T contains basic types σ, τ, . . . of a given problem and
F is a finite set of operations of the form f : σ1 . . . σn → τ . We associate with a
signature Σ two functions:
• arity : F → T ∗, where T ∗ is a set of finite strings over T . This function assigns

to every function symbol f : σ1 . . . σn → τ in F its arity, i.e. arity(f) = σ1 . . . σn;
• type : F → T , that assigns to every operation specification its result type, i.e.

type(f) = τ .
From basic types we construct Church’s types using constructors ’×’ for product

types, ’+’ for coproduct types and ’→’ for function types and we denote by T̄ the
least set of Church’s types over Σ. We assume a countable set V ar = {v1 : σ1, v2 :
σ2, . . . , x, y, z, . . .} of term variables. Every variable has assigned exactly one type
and the notation v : σ declares the variable v of the type σ. A finite sequence

Γ = (v1 : σ1, . . . , vn : σn)

consisting of variable declarations is type context. A term t of type τ in which can
occur only variables declared in Γ we denote by the following sequent

Γ ⊢ t : τ.
The classifying category Cl(Σ) over a signature Σ has type contexts Γ,∆, . . . as
category objects and typed terms [t] : Γ → ∆ as category morphisms, where
Γ ⊢ t : τ and τ ∈ ∆. The empty product type 1 is the terminal object and
the empty coproduct type 0 is the initial object of the category Cl(Σ). From
the construction we see that Cl(Σ) has finite products, finite coproducts, exponent
objects σ → τ , terminal and initial object, therefore it is bicartesian closed category
(biccc) [2].

A model of type theory over Σ is a functor M from the classifying category
Cl(Σ) to the biccc B of type representations

M : Cl(Σ)→ B

Finite automata in the mathematical theory of programming 93

defined as follows:
• for every basic type σ in T ,M(σ) = [[σ]], an object in B, a type representation
of σ;
• for every operation specification f : σ1 . . . σn → τ

M(f) = [[f]] : [[σ1]]× · · · × [[σn]]→ [[τ]],

a morphism between corresponding type representations.

3. Introducing types into sequential automata

Terms can be considered as strings over some input alphabet that have some
internal structure. For recognizing strings of symbols over some alphabet we can
use finite sequential automata [1] and for evaluation of terms we can use finite tree
automata [5]. In our approach we have one problem in using these automata, our
terms are typed and we have to extend the notion of automata to involve typing. To
introduce types into finite deterministic sequential automata we follow the approach
defined in [3, 4]. The authors define typed finite deterministic sequential automata
(TA) for recognizing languages with structure. Input symbols of TA not only follow
each other but bring some additional information that is appended to states of TA
and so it is able to analyze the internal structure of input string. The original
aim of TA was the grammatical inference in learning formal grammars for uknown
languages from given data.

Our approach is quite different, but this method seems to be appropriate for
using TA for type-checking and analyzing well-formedness of terms of our type
theory. We assume that the additional information brought by input symbols is the
knowledge that input symbols are typed. As input alphabet we use typed variables,
operation names from a signature Σ and as auxiliary symbols the brackets. Left
brackets are dummy symbols for TA, right brackets inform about finishing the
analysis of a subterm. A TA has to check whether the input string is a well-formed
term, i.e. it is constructed accordingly to term construction rules and is well-typed.
In such a case TA terminates its work in a final state that is of expected type. But,
e.g. the terms plus)x and plus(b, n) with b : bool, n : nat are not well-formed terms
and there is no TA accepting them.

Let Σ = (T, F) be a signature as above. We define the set F̄ containing only
names of operations from Σ. The input alphabet of TA is Σ̄ = V ar ∪ F̄ ∪ {(,)}.

A typed finite deterministic sequential automaton is a 7-tuple

TA = (Σ̄, Q, q1, Qfinal, δ, T̄ , type)

where
• Σ̄ is an input alphabet defined above;
• Q is a finite set of states, every state has a type assigned by a function
type : Q→ T̄
• T̄ is a set of Church’s types together with σinit, the type of initial state;

94 V. Novitzká, D. Mihályi, V. Slodičák

• δ : Q× Σ̄→ Q is a transition (next state) function.
A language L(TA) recognized by TA is a set of all typed terms Γ ⊢ t : τ over a
signature Σ such that δ(q1, t) = q, where q ∈ Qfinal and type(q) = τ .

Example 3.1. A typed term b : bool, x : int, n : nat ⊢ if(b, exp(x, n), x) : int can
be recognized by the following typed automaton TA:
• the input alphabet is Σ̄ = {b, x, n} ∪ {if, exp} ∪ {(,)};
• the set of states is Q = {q1, . . . , q9};
• the set of final states is the singleton Q = {q9};
• the transition function is defined by the following equations:

δ(q1, if() = q2 δ(q2, b) = q3 delta(q3, exp() = q6 δ(q6, x) = q7
δ(q7, n) = q8 δ(q8,)) = q4 δ(q4, x) = q5 δ(q5,)) = q9

• and the typing function is defined as follows:

type(q1) = σinit type(q6) = int× nat→ int
type(q2) = bool × int× int→ int type(q7) = int
type(q3) = bool type(q8) = nat
type(q4) = int type(q9) = int
type(q5) = int

This TA can be illustrated in Figure 1.

Figure 1: Typed sequential automaton

3.1. From type theory to typed sequential automata
Every TA can be depicted in the category Set consisting of sets as category

objects and functions between them as category morphisms [1]. The category Set
is biccc with singletons {∗} as terminal objects and the empty set as the initial
object.

Let Cl(Σ) be a classifying category over a signature Σ and Γ ⊢ t : τ be a term.
We assign to t a typed automaton in Set as follows. Because category objects in
Set are all sets, the sets T̄ and Σ̄ are Set-objects. We take as the set Q the least
set of states of types from T̄ . Because Set is biccc, there exists the product object
Q× Σ̄. We define the transition function δ in Set

δ : Q× Σ̄→ Q

Finite automata in the mathematical theory of programming 95

with the property
δ(q1, t) = q, and type(q) = τ.

Then we take as the final state a singleton Qfinal = {q}. It is easy to define a
function type because the input symbols deliver types to states. As the initialization
function of TA we take a function {∗} → Q from a terminal object in Set that
provides the initial state q1 : σinit.

If Γ ⊢ t : τ is a well-formed term in our type theory over a signature Σ, we
can always find a typed automaton accepting it. The proof follows straightforward
from the construction. We can show such typed automaton in Set in the diagram:

Q× Σ̄

{∗} - Q
�
δ

T̄

type-

4. Typed tree automata

A tree is a frequently used data structure in computer science. Every term t
can be viewed as a finite labeled tree such that the leaves are variables or constants
and internal nodes are labeled with function symbols with positive arity. From
an internal node u lead arity(u) edges. For our purposes we extend the notion of
labeled trees with types. Every node in a typed tree has associated a type.

Example 4.1. Our typed term from previous example b : bool, x : int, n : nat ⊢
if(b, exp(x, n), x) : int can be considered as typed labeled tree in Figure 2:

Figure 2: Example of typed tree

Tree automata [5] are devices that handle labeled trees analogously as sequential
automata handle sequences of input symbols. In contrast to sequential automata
which work from left to right, tree automata work bottom-up, from the leaves to
the root. We denote by Tree(Γ) =

⋃
σ∈T̄ Treeσ(Γ) the set of all trees of types from

T̄ in which can occur only variables declared in a type context Γ. We extend the
notion of finite deterministic tree automata with types similarly as in the case of
sequential case. States of a tree automaton are associated to every node of the tree.
The labeling of each node is defined by transition function and the typed state of

96 V. Novitzká, D. Mihályi, V. Slodičák

the root determines whether the tree belongs to the tree language or not. In the
following we denote a labeled tree for a typed term Γ ⊢ t : τ by t if it does not lead
to confusion.

A typed finite deterministic tree automaton (TTA) is a structure

TTA = (Q, Σ̄, δ, Qfinal,Γ, λ)

where
• Σ̄ is an input alphabet defined as in the case of typed sequential automata;
• Q =

⋃
σ∈T̄ Qσ is the finite set of typed states over T̄ ;

• Qfinal ⊆ Q is a set of final states;
• δ : F̄ ×Q∗ → Q is a transition function. If f : σ1 . . . σn → τ is a function
symbol from F then

δ(f, q1 . . . qn) = qfin,

where qfin ∈ Qfinal, type(qi) = σi, for i = 1, . . . , n and type(qfin) = τ ;
• Γ = (v1 : σ1, . . . , vn : σn) is a type context consisting of variable declarations
occuring in a tree;
• λ : Γ→ Q is an initialization mapping assigning to variables their typed
states, i.e. values of type representations. For instance, if x : σ then
λ(x) = a, a ∈ [[σ]].

We extend a transition function to handle typed trees. We define a function δ′ : F̄×
(Treeσ(Γ))

∗
σ∈T̄
→ Q recursively as follows:

• if arity(c) = ε then δ′(c) = δ(c);
• if arity(f) = type(δ′(t1), . . . , δ′(tn)) then
δ′(f(t1, . . . , tn)) = δ(f, δ′(t1), . . . , δ′(tn)).

We say that TTA accepts a tree t if and only if δ′(t) ∈ Qfinal. The language
L(TTA) recognized by TTA is the set of all trees accepted by the automaton, it is
a regular tree language.

Let Treesτ (Γ) be a set of all trees of type τ over Γ. For a function symbol
f : σ1 . . . σn → τ we can define a tree construction function

ϕf :

n∏

i=1

Treeσi(Γ)→ Treeτ (Γ).

If ti ∈ Treeσi(Γ), for i = 1, . . . , n are trees then

ϕf (t1, . . . , tn) = t.

Computation mappings of typed trees can be defined by

ρf : (Treeτ (Γ), ϕf)→ (Q, {δ′f})

for every function symbol f : σ1 . . . σn → τ . These mappings extend the initializa-
tion mapping λ.

Finite automata in the mathematical theory of programming 97

Example 4.2. Let b : bool, x : int, n : nat ⊢ if(b, exp(x, n), x) : int be a typed
term from previous examples. A possible TTA accepting this tree can be defined as
follows. The set Q contains states of types from T = {bool, int, nat}, type context
is Γ = (b : bool, x : int, n : nat) and let the initialization mapping be defined by

λ(b) = true λ(x) = −2 λ(n) = 3

The computation sequence defined by ρif is in Figure 3. We see that qfin = −8

Figure 3: Computation sequence

and type(qfin) = int.

4.1. Typed tree automata in Set

Similarly as in the case of typed sequential automata a typed tree automata
can be depicted in the category Set as it is illustrated in Figure 4.

Figure 4: TTA in the category Set

5. Conclusion

In our paper we described Church’s type theory over a signature Σ enclosed in
the classifying category Cl(Σ). We extended the sequential automata with types

98 V. Novitzká, D. Mihályi, V. Slodičák

and we got a useful mechanism for checking well-formedness of terms. Similarly
we extended tree automata with types and the resulting TTA can be used for
evaluation of typed terms of our type theory. To incorporate typed automata
into the frame of our mathematical theory of programming we defined a relation
between type theory and typed automata in the category Set.

Acknowledgements.

References

[1] Adámek, J., Trnková, V., Automata and algebras in categories, Kluver Academic
Publishers, Dordrecht, (1989).

[2] Barr, M., Wells, Ch., Category theory for computing science, Prentice-Hall,
(1990).

[3] Bernard, M., Higuera, C., GIFT: Grammatical inference for terms, Proc. Conf.
d’Apprentissage CAP99, Paris, (1999).

[4] Kermorvant, Ch., Higuera, C., Dupont, P., Learning typed automata from
automatically labeled data, Journal Electronique d’Intelligence Artificielle, Vol. 6,
No. 45, (2004).

[5] Comon, H. et al, TATA - Tree Automata techniques and applications, www.grappa.
univ-lille3.fr/tata/

[6] Novitzká, V., Church’s types in logical reasoning on programming, Acta Electronica
et Informatica, Vol. 6, No. 2, Košice, (2006), 27–31.

[7] Novitzká, V., Mihályi, D., Slodičák, V., Categorical logic over Church’s types,
Proc. 6th Scient. Conf. Electronic Computers and Informatics ECI’2006, Košice-
Herľany, (September 2006), 122–129.

[8] Tejfel, M., Horváth, Z., Kozsik, T., Extending the Sparkle Core language with
object abstraction, Acta Cybernetica, Vol. 17., (2005), 419–445.

[9] Zólyomi, I., Porkoláb, Z., Kozsik, T., An Extension to the Subtype Relationship
in C++ Implemented with Template Metaprogramming, Generative Programming
and Component Engineering LNCS, Vol. 2830, (2003), 209–227.

Valerie Novitzká, Daniel Mihályi, Viliam Slodičák
Department of Computers and Informatics
Faculty of Electrical Engineering and Informatics
Technical University Košice
Letná 9, 041 20 Košice, Slovakia

