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Abstract

In [1] B. Nagy introduced a new model for analog computations, namely
the interval-valued computations, where computation is executed on so-called
interval-valued bytes, which are special subsets of interval [0,1) rather than a
finite sequence of bits. The allowed set of computational operators on these
values were motivated by the operators usually applied to finite sequences
of bits, namely, Boolean operators and shifts, furthermore, a rather specific
kind of “magnification” operator, named there fractalian product.

In [4] S. Vályi and B. Nagy solved a PSPACE-complete problem by a
linear interval-valued computation. This solution depends on the possibil-
ity of construction of interval-values with arbitrarily small components and
this step needs heavy application of products. In this article we show that
omitting this operator still results in a computational device with a high
computation power. Namely, we will demonstrate this by establishing that
the finite variable satisfaction problem of quantified propositional formulae is
still decidable by a fast (quadratic) interval-valued computation without any
application of the product operator.
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1. Introduction

A new discrete time / continuous space computational model was proposed in
[1], the so-called interval-valued computing. It involves another type of idealization
than Turing machines – the density of the memory can be raised unlimitedly instead
of its length. This new paradigm keeps some of the features of traditional Neumann-
Turing type computations.
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It works on specific subsets of the interval [0, 1), more specifically, on finite
unions of [)-type subintervals. In a nutshell, interval-valued computations start
with a given interval-value

( [
0, 12
) )

and continue with a finite sequence of oper-
ator applications. Work on interval-values happens sequentially in a deterministic
manner.

The allowed operations are motivated by the operations of the traditional com-
puters: Boolean operations and shift operations. There is only an extra operator,
the product. The role of the introduced product is to connect interval-values on
different “resolution levels”. Essentially, it shrinks interval-values.

So, in interval-valued computing systems, an important restriction is eliminated,
i.e. there is no limit on the number of bits of a cell in the system; we have to
suppose only that we always have a finite number of bits. Of course, in the case of
a given computation an upper bound (the bit height of the computation sequence)
always exists, and it gives the maximum number of bits the system needs for that
computation process. Hence our model still fits into the framework of the Church-
Turing paradigm, but it faces different limitations than the classical Turing model.

Although the computation in this model is sequential, the inner parallelism
is extended. One can consider the system without restriction on the size of the
information coded in an information unit (interval-value). It allows to increase the
size of the alphabet unlimitedly in a computation. A PSPACE-complete problem
is solved in [4] by a linear interval-valued computation. The solution depends on
the possibility of construction of interval-values with arbitrarily small components
and this step needs the application of the product operator. In this article we
show that omitting this operator still results in a computational device with a
high computation power. Namely, we will demonstrate this by establishing that
the finite variable satisfaction problem of quantified propositional formulae is still
decidable by a fast (quadratic) interval-valued computation without any application
of the product operator.

2. The interval-valued computation system

2.1. Interval-valued computations

In this section we formalize the interval-valued computing system given in [1],
following [4]. First we define what an interval-value means. Then we present the
allowed operations which can be used to build and evaluate computation sequences.
Finally, we give the notions concerning complexity and decidability.

2.2. Interval-values

We note in advance that we do not distinguish interval-values (specific functions
from [0, 1) into {0, 1}) from their subset representations (subsets of [0, 1)) and we
use always the more convenient notation.
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Definition 2.1. The set V of interval-values coincides with the set of finite unions
of [)-type subintervals of [0, 1).

Definition 2.2. The set V0 of specific interval-values coincides with
{

k⋃

i=1

[
li
2m

,
1 + li
2m

)
: m ∈ N, k 6 2m, 0 6 l1 < . . . < lk < 2m

}
.

2.3. Operators on interval-values
Similarly to traditional computers working on bytes, of course, we allow bitwise

Boolean operations. If we consider interval-values as subsets of [0,1) then the cor-
responding operations coincide with the set-theoretical operations of complement-
ation (A), union (A ∪ B ) and intersection (A ∩ B). V forms an infinite Boolean
set algebra with these operations. V0 is an infinite subalgebra of the last algebra.

Before we add some other operators, we introduce a function assisting the formu-
lation of the following definition. Intuitively, it provides the length of the left-most
component (included maximal subinterval) of an interval-value A.

Definition 2.3. We define the function Flength : V→ R as follows. If there exist
a, b ∈ [0, 1] satisfying [a, b) ⊆ A, [0, a) ∩ A = ∅ and [a, b′) 6⊆ A for all b′ ∈ (b, 1],
then Flength(A) = b− a, otherwise Flength(A) = 0.

Flength helps us to define the binary shift operators on V. The left-shift
operator will shift the first interval-value to the left by the first-length of the second
operand and remove the part which is shifted out of the interval [0, 1). As opposed
to this, the right-shift operator is defined in a circular way, i.e. the parts shifted
above 1 will appear at the lower end of [0, 1). In this definition we write interval-
values in their original, “characteristic function” notation.

Definition 2.4. The binary operators Lshift and Rshift on V are defined in the
following way. If x ∈ [0, 1] and A,B ∈ V then

Lshift(A,B)(x) =

{
A(x+ Flength(B)), if 0 6 x+ Flength(B) 6 1,
0 in other cases.

Rshift(A,B)(x) =

{
A(frac(x − Flength(B))), if x < 1,
0 if x = 1.

Here the function frac gives the fractional part of a real number, i.e. frac(x) =
x− ⌊x⌋, where ⌊x⌋ is the greatest integer which is not greater than x.

Now we explain the so-called fractalian product on intervals.

Definition 2.5. Let A and B be general interval-values and x ∈ [0, 1). Then the
fractalian product A ∗ B includes x if and only if B(x) = 1 and A

(
x−xB

xB−xB

)
= 1,

where xB denotes the lower end-point of the B-component including x and xB

denotes the upper end-point of this component, that is, [xB, xB) is the maximal
subinterval of B containing x.
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The idea and the role of this operation is similar to that of unlimited shrinking
of 2-dimensional images in [6]. It will be used to connect interval-values of different
resolution.

2.4. Syntax and semantics of computation sequences

As usual, the length of a sequence S is denoted by |S| and its i-th element by
Si. If j 6 |S| then the j-length prefix of S is denoted by S→j .

Definition 2.6. An interval-valued computation sequence is a nonempty finite se-
quence S satisfying S1 = FIRSTHALF and further, for any i ∈ {2, . . . , |S|}, Si

is (op, l,m) for some op ∈ {AND, OR, LSHIFT, RSHIFT, PRODUCT } or Si

is (NOT, l) where {l,m} ⊆ {1, . . . , i − 1}. The bit height of a computation is the
number of the applied PRODUCT operators in it.

Let n denote a positive integer in the rest of this paper.

Definition 2.7. The notion of n-finitized interval-valued computation sequence is
the modification of the above definition starting not from FIRSTHALF but from
another constant FIRSTn and it does not use the operator PRODUCT .

The semantics of interval-valued computation sequences is defined by induction
on the length of the sequences. The interval-value of such a sequence S is denoted
by ‖S‖ and defined by induction on the length of the computation sequence, as
follows.

Definition 2.8. First, we fix ‖(FIRSTn)‖ as
[
0, 1

2n

)
. Second, if S is an interval-

valued computation sequence and |S| is its length, then

‖S‖ =





‖S→j‖ ∩ ‖S→k‖, if S|S| = (AND, j, k),
‖S→j‖ ∪ ‖S→k‖, if S|S| = (OR, j, k)
‖S→j‖ ∗ ‖S→k‖, if S|S| = (PRODUCT, j, k)
Rshift(‖S→j‖, ‖S→k‖), if S|S| = (RSHIFT, j, k)
Lshift(‖S→j‖, ‖S→k‖), if S|S| = (LSHIFT, j, k)

‖S→j‖, if S|S| = (NOT, j).

One can notice, that in this formulation of interval-valued computations, only
specific interval-values (cf. Definition 2.2) appear as values of computation se-
quences. We can also notice that an n-finitized computation sequence without
product operators can have only values from the set Vn

0 of n-finitized specific

interval-values, that is, from
{

k⋃
i=1

[
li
2n ,

1+li
2n

)
: k 6 2n, 0 6 l1 < · · · < lk < 2n

}
.

2.5. Complexity

In this subsection, we give the definitions concerning interval-valued compu-
tability and complexity.
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Definition 2.9. Let Σ be a finite alphabet and let L ⊆ Σ∗ be a language. We say
that L is decidable by an interval-valued computation if there is an algorithm A
that for each input word w ∈ Σ∗ constructs an appropriate computation sequence
A(w) such that w ∈ L if and only if ‖A(w)‖ is nonempty. Furthermore, we consider
L also decidable in this case.

This last remark makes it possible to test emptiness and, by applying set-
theoretical operators, also to test whether ‖A(w)‖ = [0, 1). In [1], SAT was solved
by a linear interval-valued computation. In [4], a PSPACE-complete problem,
QSAT was solved by a linear interval-valued computation in the following meaning.

Definition 2.10. We say that a language L ⊆ Σ∗ is decidable by a linear (quad-
ratic) interval-valued computation if and only if there is a positive constant c and a
logarithmic space algorithm A with the following properties. For each input word
w ∈ Σ∗, A constructs an appropriate interval-valued computation sequence A(w)
such that |A(w)| is not greater than c|w| (c|w|2) and w ∈ L if and only if ‖A(w)‖
is nonempty. Again, deciding L instead of L itself is allowed.

3. More notions

We recall now the definition of (a suitable variant of) the language QSAT of
true quantified propositional formulae. It is a subset of satisfiable propositional
formulae, say, built from the propositional variables {x1, x2, . . .}, by the logical
operators ¬,∧,∨. We do not explicitly put the quantifier prefix to the propositional
formulae, only the definition of the language is given this way. Variables with odd
indices are meant to quantify universally while those with even indices to quantify
existentially. It can be shown by renaming of variables and using fictive quantifiers
that this variant is equally PSPACE-complete as the original QSAT ([5]). Before
we define QSAT , we have to make some preparations.

Definition 3.1. A valuation is a function with range {0, 1} on the domain {x1, . . . ,
xn}. If t1, . . . , tn are truth values then we write (t1, . . . , tn) for the valuation v that
v(x1) = t1, . . . , v(xn) = tn. For a quantifier-free formula φ, [[φv]] denotes the truth
value of φ by the valuation v. For any positive integer i, the quantifier Qi is ∀ if i
is odd otherwise it is ∃.

Definition 3.2. For any propositional formula φ built from x1, . . . , xn, φ be-
longs to QSAT if and only if (∀t1 ∈ {0, 1})(∃t2 ∈ {0, 1}) . . . (Qntn ∈ {0, 1}) :
[[φ(t1, . . . , tn)]] = 1 holds. φ belongs to SAT if and only if (∃t1 ∈ {0, 1})(∃t2 ∈
{0, 1}) . . . (Qntn ∈ {0, 1}) : [[φ(t1, . . . , tn)]] = 1 holds.

Definition 3.3. The restricted-to-n-variables subproblem of SAT (QSAT ) means
the fragment where the occuring propositional variables in the formulae are limited
to {x1, . . . , xn}.
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4. Result and proof

Now we formalize our result that shows the correspondence between the restric-
ted-to-n-variables subproblem of QSAT and the n-finitized computations, without
the product operator. We remind that n is an arbitrarily fixed positive integer.

Theorem 4.1. Any restricted-to-n-variables subproblem of SAT and QSAT are
decidable by a quadratic n-finitized interval-valued computation sequence without
any usage of the product operator.

Proof. We give an algorithm to construct the computation sequence K1, . . . ,
K2n−1, S1,0, . . . , S1,2n−2, S2,0, . . . , S2,2n−4, . . . , Si,0, . . . , Si,2n−2i, . . . , Sn−1,0, . . . ,
Sn−1,1, . . . , Sn,0, B1, . . . , Bm, C1, . . . , C8n, D for any input formula φ that contains
exactly the variables x1, . . . , xn and the number of its subformulae is m. This algo-
rithm produces the needed quadratic interval-valued computation. The length of
the produced sequence is in O(n2+ |φ|), where |φ| is the length of φ. The algorithm
provides the above computation sequence in such a way that its interval-value will
be empty if and only if φ ∈ QSAT . Instead of writing members of computation
sequence, for example, as K8 = (RSHIFT, 7, 2) we write this definition in form
Ki = Rshift(K7,K2).

First, we define K1 as (FIRSTn), further, for j ∈ {1, . . . , n − 1}, K2j =
Rshift(K2j−1,K2j−1), K2j+1 =

⋃
(K2j−1,K2j).

By induction on j one can establish the following.

Lemma 4.2. For each j ∈ {1, . . . , n − 1}, ‖K2j‖ =
[

1
2n−j+1 ,

1
2n−j

)
, and for each

j ∈ {0, . . . , n− 1}, ‖K2j+1‖ =
[
0, 1

2n−j

)
.

The algorithm proceeds in the following way.

Definition 4.3. For i ∈ {1, . . . , n}, let Si,0 beK2i−1 and for each j ∈ {0, . . . , n−i−
1} let us define Si,2j+1 as Rshift(Si,2j,K2i−1+2j) and Si,2j+2 as

⋃
(Si,2j , Si,2j+1).

Lemma 4.4. For each i ∈ {1, . . . , n} and j ∈ {0, . . . , n− i},
‖Si,2j‖ =

⋃2j−1
k=0

[
2k

2n−i+1 ,
2k+1
2n−i+1

)
,

specially, for each i ∈ {1, . . . , n}, ‖Si,2n−2i‖ =
⋃2n−i−1

k=0

[
2k

2n−i+1 ,
2k+1
2n−i+1

)
.

From now on, we continue by the method of the proof of linear interval-valued
decidability of QSAT .

The n independent truth values of x1, . . . , xn will be represented by the interval-
values ‖S1,2n−2‖, ‖S2,2n−4‖, . . . , ‖Sn,0‖. Now we establish some further properties
of the subsequence ‖S1,2n−2‖, ‖S2,2n−4‖, . . . , ‖Sn,0‖.
Lemma 4.5. For every r ∈ [0, 1) and positive integer j 6 n hold the following
conditions.

(1) if r ∈ ‖Sj,2n−2j‖ then for all i < j, r + 1
2j ∈ ‖Si,2n−2i‖

if and only if r ∈ ‖Si,2n−2i‖,
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(2) if r /∈ ‖Sj,2n−2j‖ then for all i < j, r − 1
2j ∈ ‖Si,2n−2i‖

if and only if r ∈ ‖Si,2n−2i‖,

(3) r + 1
2j ∈ ‖Sj,2n−2j‖ if and only if r /∈ ‖Sj,2n−2j‖.

Let φ1, . . . , φm be an enumeration of all the subformulae of φ such that any
formula is preceded by its subformulae (consequently, φm = φ). The algorithm
gives the next part of the computation sequence, (B1, . . . , Bm), in the following
way. For each i ∈ {1, . . . ,m},

Bi =





Bj ∧Bk if φi = φj ∧ φk,
Bj ∨Bk if φi = φj ∨ φk,
¬Bj if φi = ¬φj ,
Sj,2n−2j if φi = xj .

By induction on j the following statement can be verified.

Lemma 4.6. For each j ∈ {1, . . . ,m},
‖Bj‖ = {r ∈ [0, 1) : [[φj(r ∈ ‖S1,2n−2‖, r ∈ ‖S2,2n−4‖, . . . , r ∈ ‖Sn,0‖)]] = 1} holds.

So far, we have obtained a quadratic size computation sequence to decide the
satisfiability of φ(= φm) by the validity of the following equivalence.

Lemma 4.7. φ is satisfiable if and only if ‖Bm‖ is nonempty.

Proof. This can be concluded from the fact, that for each n-tuple (t1, . . . , tn) of
truth values there is an r ∈ [0, 1) such that (∀i ∈ {1, . . . , n}): ti = r ∈ ‖Si,2n−2i‖.
�

The computation sequence continues with C1, . . . , C8n so that for each integer
j < n, the following holds. ‖C8(j+1)‖ =
((Lshift(‖C8j‖, ‖Sn−j,2n−2(n−j)‖) ∩ ‖Sn−j,2n−2(n−j)‖) ∪ ‖C8j‖) ∪

((Rshift(‖C8j‖, ‖Sn−j,2n−2(n−j)‖)∩‖Sn−j,2n−2(n−j)‖)∪‖C8j‖), if n−j is even,
and (Lshift(‖C8j‖, ‖Sn−j,2n−2(n−j)‖) ∩ ‖Sn−j,2n−2(n−j)‖ ∩ ‖C8j‖) ∪

(Rshift(‖C8j‖, ‖Sn−j,2n−2(n−j)‖)∩‖Sn−j,2n−2(n−j)‖∩‖C8j‖) in the other case.
In this definition, we do not specify all the intermediate expressions between C8j

and C8(j+1), they are the subexpressions of C8(j+1) needed to express C8(j+1) from
C8j and Sn−j,2n−2(n−j).

To make the next lemma more readable, we assume without any further men-
tion, that variables t1, t2, . . . , tn range over the truth values. We recall that the
quantifier sequence Q1, Q2, Q3, . . . is defined as ∀, ∃, ∀, . . ., respectively.

Lemma 4.8. For each j ∈ {0, . . . , n} and for all r ∈ [0, 1) :
r ∈ ‖C8j‖ if and only if
Qn−j+1tn−j+1 . . . Qntn[[
φ(r ∈ ‖S1,2n−2‖, . . . , r ∈ ‖Sn−j,2n−2(n−j)‖, tn−j+1, . . . , tn)

]]
= 1.

The proof of the lemma is technical, we omit it.
Letting j = n, the above lemma ensures that r ∈ ‖C8n‖ if and only if
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Q1t1 . . . Qntn : [[φ(t1, . . . , tn)]] = 1 holds for any r ∈ [0, 1). Since the right side
of the last equivalence is independent from r, we can state that Q1t1 . . . Qntn :
[[φ(t1, . . . , tn)]] = 1 if and only if ‖C8n‖ is equal to [0, 1). Finally, by setting the
last element of the computation sequence, D to ¬C8n the algorithm constructs a
computation sequence whose interval-value is empty if and only if φ ∈ QSAT . �
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