
Proceedings of the 7 th International Conference on Applied Informatics
Eger, Hungary, January 28–31, 2007. Vol. 1. pp. 75–81.

Efficient skolemization

Zoltán Lengyel

University of Debrecen, Institute of Informatics
e-mail: lengyelz@inf.unideb.hu

Abstract
One of the most important tasks of each first-order automated theo-

rem prover system is the skolemization. This satisfiably equivalent rewriting
method makes it possible to use efficient proving engines like resolution on
first-order formulas. Though it is a fundamental step of each algorithm, the
resulting skolem formula can be various. Some technics can eliminate false
dependencies while others can result in more general formulas. Using such
versions of skolemization can strongly reduce the running time of the theo-
rem prover engine. In this paper we study such methods and also investigate
the running time and effectiveness of these improved skolemization processes
themselves.

Keywords: classical first-order logic, skolemization, binary decision diagram

MSC: 03B10

1. Introduction

In 1920 Thoralf A. Skolem [10] introduced an algorithm to eliminate one type
of quantifiers (mostly ∃) in a formula and replace the eliminated variables with
new function applications. Though it is not an equivalence preserving transforma-
tion, it is still very useful in theorem proving since it preserves satisfiability and
unsatisfiability. Recently, Skolemization has been an important step in most of the
automated first-order theorem prover systems.

The running time of a theorem prover engine strongly depends on the quality
of Skolemization. The naive algorithm has poor quality.

Naive Algorithm. We assume, the formula is clear which means each quantifier
binds different variables and there is no free variable that is bounded by a quantifier.

1. Prenexing: move every quantifier in front of the formula.

(∃x∀yR(x, y) ∨ ¬∀zP (z))
∃x∀y∃z (R(x, y) ∨ ¬P (z))

75

76 Z. Lengyel

2. Skolemization: Eliminate all variables, bounded by existential quantifiers, by
introducing new Skolem functions (we call 0-ary functions as Skolem con-
stants)

∀y (R(cx, y) ∨ ¬P (fz(y)))

We refer to this algorithm also as Standard Skolemization.
Some improved algorithms work only on formulas in Negation Normal Form

(NNF). We say a formula is in NNF iff it contains only ¬ ∨ ∧ operators and ¬
occurs only in front of atoms.

This paper is organized as follows: Section 2 introduces improved Skolemization
methods. In Section 3 we show a BDD-based method to eliminate most of the false
dependencies. Section 4 contains our conclusion.

2. Improved skolemization

First, we investigate improvements only which can generate “easier” sentences
for the theorem prover engine. We can achieve shorter running time by eliminating
false dependences, by reducing the number of Skolem symbols and by creating more
general Skolem formula (i.e. reducing the dependencies between universally quan-
tified variable occurrences by introducing new universally quantified variables).

2.1. Antiprenexing
The prenexing step of the naive algorithm can produce many false dependencies.

In the above example, after prenexing we got

∃x∀y∃z (R(x, y) ∨ ¬P (z)) .

So we should replace z with fz(y), however, it is obvious that z does not depend
on y.

Such false dependencies can be generated also during formalizing the problem,
so it worths antiprenexing the formula before replacing existential variables. Egly’s
idea [3] was to move universal quantifiers inward as far as possible whereas move
existential quantifiers outward in order to avoid duplication of Skolem functions.
As an example consider the formula

∀x∀y∃u∀z∃w ((¬R(x, y) ∨R(x, u) ∨R(a,w)) ∧ ¬R(a, z)) .

Without antiprenexing we have

((¬R(x, y) ∨R(x, fu(x, y)) ∨R(a, fw(x, y, z))) ∧ ¬R(a, z)) ,

while with antiprenexing we get

∀x ((∀y¬R(x, y) ∨ ∃u (R(x, u) ∨R(a, u))) ∧ ∀z¬R(a, z)) ,
((¬R(x, y) ∨R(x, fu(x)) ∨R(a, fu(x))) ∧ ¬R(a, z)) .

Efficient skolemization 77

2.2. Optimized skolemization

Let ∆ be a sentence in NNF and Θ = ∃x1 . . . ∃xk(Φ ∧ Ψ) be a sub-formula of
∆ and assume that ∆ |= ∀y1 . . . ∀yn∃x1 . . . ∃xkΦ where y1 . . . yn denote the free
variables in Θ. We use the Φ{x 7→t} notation for the formula that we get after
replacing x free variables with t terms in Φ. Now, we say

∀y1 . . .∀ynΦ{xi 7→fi(y1,...,yn)} ∧ ∆
[
Θ|Ψ{xi 7→fi(y1,...,yn)}

]

is the result of an Optimized Skolemization step on ∆ where f1, . . . , fk are new
Skolem functions and ∆

[
Θ|Ψ{xi 7→fi(y1,...,yn)}

]
denotes the formula that we get by

replacing Θ with Ψ{xi 7→fi(y1,...,yn)} in ∆. In [7], Ohlbach and Weidenbach proved
that ∆ is satisfiable iff the resulting formula of Optimized Skolemization is satisfi-
able. Let us have the following sentence (or part of a sentence) as an example:

∀x∀y∀z (¬R(x, y) ∨ ¬R(x, z) ∨ ∃u (R(y, u) ∧R(z, u))) .

With Standard Skolemization we get

(¬R(x, y) ∨ ¬R(x, z) ∨R(y, f(y, z))) ∧ (¬R(x, y) ∨ ¬R(x, z) ∨R(z, f(y, z))) ,

but with Optimized Skolemization, assuming that ∀y∃uR(y, u) is provable from the
whole problem, we have

R(y, f(y, z)) ∧ (¬R(x, y) ∨ ¬R(x, z) ∨R(z, f(y, z))) .

This method seems to be very efficient but do not forget that we have to use a
theorem prover engine to prove the precondition. Systems, that use this algorithm,
are defining a time-limit, within the embedded engine has to prove the condition.
If it does not meet this threshold, the algorithm go on without applying Optimized
Skolemization step on the given subproblem.

2.3. Strong skolemization
First let us introduce the so called free variable splitting. We use the x̄ notation

to refer a list of variables. We say 〈z̄1, z̄2, . . . , z̄n〉 is a free variable splitting of
∃x̄ (Φ1 ∧ Φ2 ∧ · · · ∧Φn) where use the x̄ notation to refer a list of variables. We
say 〈z̄1, z̄2, . . . , z̄n〉 is a free variable splitting of ∃x̄ (Φ1 ∧Φ2 ∧ · · · ∧ Φn) where

z̄i = Var(Φi) \
⋃

k<i

z̄k \ x̄.

Now let ∆ be a sentence in NNF. We can replace ∃x̄ (Φ1 ∧Φ2 ∧ · · · ∧ Φn) sub-
formula of ∆ with

∀w̄2∀w̄3 . . . ∀w̄n Φ1 {xi 7→fi(z̄1,w̄2,w̄3,...,w̄n)} ∧
∀w̄3 . . . ∀w̄n Φ2 {xi 7→fi(z̄1,z̄2,w̄3,...,w̄n)} ∧

78 Z. Lengyel

...
Φn {xi 7→fi(z̄1,z̄2,z̄3,...,z̄n)}.

where fi are new functions and the cardinality of w̄i and z̄i is equal. Nonnengart
also proved in his paper [6] that Strong Skolemization preserves satisfiability and
unsatisfiability. Let us get back to our example

∀x∀y∀z (¬R(x, y) ∨ ¬R(x, z) ∨ ∃u (R(y, u) ∧R(z, u))) .
With Strong Skolemization we get

(¬R(x, y) ∨ ¬R(x, z) ∨R(y, f(y, w))) ∧ (¬R(x, y) ∨ ¬R(x, z) ∨R(z, f(y, z))) .
The only difference to the result of Standard Skolemization is that we have a new
universal variable in the first clause but actually this makes the outcome more
general and in our case allows us to apply a condensation step resulting

(¬R(x, y) ∨R(y, f(y, w))) ∧ (¬R(x, y) ∨ ¬R(x, z) ∨R(z, f(y, z))) .
Though this method is not as effective as the Optimized Skolemization, at least

there is no condition of application. Methods, that implement both algorithms,
try to apply Optimized Skolemization first and than apply Strong Skolemization
where possible.

3. Binary decision diagrams

In 1938, Shannon [9] introduced a tree representation of formulas that was re-
fined in several papers (e.g. Lee [5], Akers [1] and Bryant [2]). We call reduced
ordered Shannon-graphs as BDDs. “Reduced” has different meaning in proposi-
tional and first-order logic while “ordered” means that we have a total ordering of
kernels.

3.1. BDD in propositional logic
In propositional logic, we refer variables as kernels. Assuming that there is a

total ordering of variables A1 < A2 < · · · < An, we say Φ = ξ → Φ[ξ|1]; Φ[ξ|0]
is a BDD of Φ where ξ is the least kernel in Φ. On Figure 1, the truth-table and
the BDD representation of Φ = (A1 ∧ (¬A2 ∨A3)) can be seen (true-branches are
marked with solid while false-branches with dashed lines). In propositional logic
we have the following reduction steps:

1. sharing: we “store” isomorphic subgraphs only once making DAG (Directed
Acyclic Graph) from the Shannon-tree,

2. eliminating: we remove all non-terminal node that has the same subgraph
on its true and false branches.

These two steps with the kernel-ordering ensure that BDD is canonical form in
propositional logic.

Efficient skolemization 79

Figure 1: The truth-table and the BDD representation of (A1 ∧ (¬A2 ∨A3))

3.2. BDD in first-order logic
First-order BDDs were defined in 1992 by Posegga [8] as extension of Shannon

graphs to first-order logic. We refer predicate symbol applications (e.g. Q(x, c))
and existentially quantified formulas (e.g. ∃x (P (x) ∨ ¬P (c))) as kernels. The con-
struction of BDD is the same as in propositional logic, but now, we also build the
BDD of Φ for all quantified kernel ∃xΦ with the following additional rule:

Φ = ξ → Φ [∃xΨ | ∃xΨ[ξ|1]] ; Φ [∃xΨ | ∃xΨ[ξ|0]] , (3.1)

i.e. we replace the ξ kernel in the nested BDDs as well. We do not consider
universal quantifiers since ∀xΦ can be rewritten to ¬∃x¬Φ. In first-order logic we
need additional reduction steps:

3. Φ Φ[∃x1|1] and Φ Φ[∃x0|0],
4. Φ Φ[∃xΨ|∃xΨ′] if Ψ reduces to Ψ′,

5. the already mentioned 3.1 rule.

In first-order logic BDDs are not canonical forms.

Semantic Dependence

As we mentioned above, eliminating false dependencies can reduce the running
time of the theorem prover engine, however false dependencies, in some cases, are
not “visible”. We say Φ semantically depends on x iff ∀x∀y

(
Φ ≡ Φ{x 7→y}

)
is not

provable (where y does not occur in Φ) while Φ semantically independent of x
iff ∀x∀y

(
Φ ≡ Φ{x 7→y}

)
holds. As an easy example, let us consider the formula

∃z (P (x, z) ∨ ¬P (x, z)) that is semantically independent of x since it is tautology.

3.3. Skolemization with BDD
There are several application areas where BDDs are very useful. One of these

areas is the equivalence testing. Goubault [4] shown that we can use BDDs to prove

80 Z. Lengyel

equivalence of ∃zΦ and ∃zΦ{x 7→y}. If these are equivalent, ∃zΦ is semantically
independent of x. Eliminating this false dependence, we can introduce a more
general Skolem function. As an example, assume that we have the formula

∀x∃y(P (y) ∧ (R(x, y) ∨ ¬R(x, y))).

Then let us build the BDD for ∃yΦ and ∃yΦ{x 7→z} where

Φ = P (y) ∧ (R(x, y) ∨ ¬R(x, y)).

After applying BDD reduction steps described in [8] we get the same first-order
BDD for both formulas, that can be seen on Figure 2. It means that they are equal

Figure 2: BDD representation of ∃yΦ and ∃yΦ{x 7→z}.

and after skolemization we get

(P (cy) ∧ (R(x, cy) ∨ ¬R(x, cy))),

but with converting the BDD back into NNF, we get the more simple formula of
P (cy).

4. Concluding remark

With these methods, we can eliminate most of the false dependencies and we
can generate more general Skolem formulas but it does not worth the effort in every
case. For example, building the BDD of a formula is a time consuming process but
if we have it already, we can eliminate the most of the false dependencies, moreover
we can simplify the formula as well.

There are some false dependencies (e.g. ∀xΦ ⊃ ∃xΦ) that can not be automat-
ically recognized yet. In the future we will try to find algorithms that can remove
all the false dependencies.

Efficient skolemization 81

Acknowledgements. I want to thank Magda Várterész for her valuable com-
ments.

References

[1] Akers, S. B., Binary Decision Diagrams, IEEE Transactions on Computers, 27(6),
June (1978), 509–516.

[2] Bryant, R. E., Graph-based Algorithms for Boolean Function Manipulation, IEEE
Transactions on Computers, 8(35), (1986), 677–691.

[3] Egly, U., On the Value of Antiprenexing, In LPAR ’94: Proceedings of the 5th

International Conference on Logic Programming and Automated Reasoning, Springer
Verlag, London, UK, (1994), 69–83.

[4] Goubault, J., A BDD-based simplification and skolemization procedure, J. of the
IGPL, 3(6), (1995), 827–855.

[5] Lee, C.-Y., Representation of Switching Circuits by Binary-Decision Programs,
Bell System Technical Journal, 38, July (1959), 985–999.

[6] Nonnengart, A., Strong Skolemization, Research Report MPI-I-96-2-010, Max-
Planck-Institut für Informatik, Im Stadtwald, D-66123 Saarbrücken, Germany, De-
cember (1996).

[7] Ohlbach, H. J., Weidenbach, C., A Note on Assumptions about Skolem Func-
tions, Journal of Automated Reasoning, 15(2), (1995), 267–275.

[8] Posegga, J., Ludascher, B., Towards First-order Deduction Based on Shannon
Graphs, In GWAI, (1992), 67–75.

[9] Shannon, C. E., A Symbolic Analysis of Relay and Switching Circuits, Transactions
of the AIEE, 57, (1938), 713–723.

[10] Skolem, T. A., Logisch-kombinatorische Untersuchungen uber die Erfullbarkeit
oder Beweisbarkeit Mathematischer Satze, Skriftner utgit ar Videnskapsselskaper i
Kristiania, (4), (1920), 4–36.

Zoltán Lengyel
H-4032 Debrecen
Egyetem tér 1.
Hungary

