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Abstract

Redundancy is a substantial concept when avoiding endless computation
in theorem proving methods. In this paper, we are targeting a special class of
tableau calculi, namely rigid clausal tableaux. These tableaux are (1) clausal
in the sense that they consist solely of literals, and are (2) rigid in the sense
that they employ rigid variables. Such calculi are e.g. rigid hyper tableaux [7]
and multi-hyper (hyperS) tableaux [6]. In this paper, we construct a general
redundancy concept for rigid clausal tableaux. As a warm-up, we deduce the
so-called Sufficient Redundancy Criterion for hyper tableaux [1], in order to
demonstrate how rigid variables complicate the redundancy check. Finally,
we define what a redundant clause w.r.t. a rigid clausal tableau means, and
we prove this redundancy concept to be sound. We show that neither the
rigid hyper tableau calculus nor the multi-hyper tableau calculus can employ
this redundancy concept, since they do not support the generation of new
instances of separate branch clauses. Nevertheless, this fact sets the course
to improve the multi-hyper tableau calculus to be applicable in practice.

1. Introduction

As a substantial concept, redundancy must be defined and analyzed in con-
nection with the automated theorem proving methods intended to be applied in
practice and in concrete softwares. In spite of the fact that theorem proving in
first-order logic is undecidable, theorem provers apply methods in order to avoid
endless computation. The concept of redundancy arises actually as the theoretical
base of these methods, of which effectiveness depends on how redundancy is defined
for a particular theorem prover. In this paper, we deal with redundancy for clausal
tableaux. Tableaux are widely used in theorem proving, and were introduced by
Smullyan [9], who employed a unifying notation, by which first-order formulas are
classified as of α, β, γ, and δ types. For a γ-formula, tableau rules can be applied
several times, which endangers the finiteness of tableau derivations. This latter
problem appears in each tableau calculus, which tries to avoid it by introducing
an appropriate redundancy criterion in order to restrict the applicability of the
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γ-rule. Usually, the γ-rule generates and inserts so-called rigid variables [5] into
the tableau, like in Free-Variable Tableaux by Fitting [4] – this is why the central
problem of handling redundancy is how to deal with rigid variables.

Clausal tableaux [5, 1, 7] make tableau generation quite transparent by extend-
ing tableaux with not arbitrary formulas, but solely with clauses. As a class of
clausal tableaux, hyper tableaux combine clausal tableaux and hyper-resolution [8].
The feasibility of such calculi was already observed in the 1970s [2], but another
work by Baumgartner et al. [1] drew the attention to this class, in 1996. Baum-
gartner’s calculus is special in the sense that it avoids using rigid variables, for the
sake of simplicity of handling redundancy, among other reasons. This is done by
employing so-called purifying substitutions (hence, Baumgartner’s hyper tableaux
are also called purified hyper tableaux ), of which generation cannot be automated,
neither can purified hyper tableaux. Nevertheless, the redundancy concept for pu-
rified hyper tableaux (and, in general, for purified clausal tableaux ) is worth to
introduce in this paper, in Section 2.

Since the aim is to produce entirely automated calculi, purifying substitutions
must be eliminated, i.e. hyper tableaux using rigid variables become focal points of
research [3, 7, 6]. In Section 3, a redundancy concept is proposed for rigid clausal
tableaux in general.

1.1. Preliminaries
In the followings, we assume the reader to be familiar with the basic concepts

of first-order logic. Formulas and literals are defined as usual, and so are clauses,
i.e. a clause is a formula ∀(L1 ∨ · · · ∨ Lk) where each Li is a literal, k > 0. By
∀A we mean the (universal) closure of a formula A. A clause ∀(L1 ∨ · · · ∨ Lk)
can be denoted by L1 ∨ · · · ∨ Lk as well, i.e. unifiers can be not shown, since all
the variables are basically universally quantified. Similarly, the same clause can be
considered as a set of its literals, i.e. it can be denoted by {L1, . . . , Lk}.

As usual, tableaux are defined as trees of which the nodes are labeled with
formulas. Nevertheless, a tableau can be considered as a set of its branches, and
a branch can be considered as a set of its formulas, too. In the followings, we
deal solely with clausal tableaux [5, 1, 7], i.e. with tableaux of which the nodes
are labeled with literals. Furthermore, we regard all the variables occurring in a
clausal tableau as rigid variables ([5], page 114).

Definition 1.1 (Formula Represented by a Tableau). Let

T = T1 T2 . . . Tk

A

be a tableau, where A is a formula and T1, . . . , Tk are tableaux, k > 0. The formula
represented by T is

F(T ) = A ∧
( ∨

16i6k

F(Ti)
)
.
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According to the above definition, a branch can also be considered as the con-
junction of its formulas, and a tableau as the disjunction of its branches (as con-
junctions). Sometimes, T is implicitly considered as F(T ) whenever a formula is
needed instead of a tableau. For instance, FV(T ) means the set of all the free vari-
ables in F(T ), where FV(A) denotes the set of all the free variables in a formula
or a formula set A.

Definition 1.2 (Attaching a Clause to a Tableau). A clause C = {L1, . . . , Lk} is
attached to a branch B of a clausal tableau T by constructing the following tableau:

T B

L1 L2
. . . Lk

which is denoted by T +BC.

In the latter definition, all the literals of C are attached to B one by one,
generating k new branches; the other parts of T remain unchanged.

2. Redundancy for Purified Clausal Tableaux

In order to specify what in general a purified clausal tableau is, let us first
introduce the concept of a pure clause [1]:

Definition 2.1 (Pure Clause). A clause C is pure iff FV(L1)∩FV(L2) = ∅ for all
L1, L2 ∈ C, L1 6= L2. A substitution π is a purifying substitution for a clause C
iff Cπ is pure.

A clausal tableau T is said purified if it has been constructed by attaching solely
pure clauses – i.e. the successors of a node do not share any variable. Thus, the
closure of the formula represented by T , i.e. ∀F(T ), can be written in the following
equivalent form: ∨

B∈T

∧

L∈B
∀L.

Thus, each branch of T can be considered as the conjunction of the closures of its
literals. This is why we deal with redundancy w.r.t. conjunction in this section.

Theorem 2.2 (Redundancy w.r.t. Conjunction). Let A and B1, . . . , Bk be formu-
las, k > 1. If there is a substitution σ for some Bi such that A = Biσ then

A ∧
∧
Bi ∼

∧
Bi.

(For two formulas X and Y , X ∼ Y means that X and Y are logically equivalent,
i.e. M |= X iffM |= Y for all modelsM.)

Using the above theorem, which is proved in [6], redundancy for purified clausal
tableaux can be defined as follows:
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Definition 2.3 (Redundancy w.r.t. a Purified Clausal Tableau Branch). A clau-
se D is redundant w.r.t. a branch B of a purified clausal tableau iff there is a
substitution σ for two literals L1 ∈ D and L2 ∈ B such that L1 = L̂2σ. The
notation L̂ refers a new instance of the literal L (or to be more precise, L̂ is the
single literal of a new instance of the clause ∀L).

For a purified clausal tableau calculus which has such a derivation rule that provides
the generation of new instances of branch literals, the above redundancy concept
can be employed. For instance, Baumgartner’s (purified) hyper tableau calculus
[1] has such a derivation rule, and this is why the above redundancy concept is em-
ployed in the so-called Sufficient Redundancy Criterion proposed by Baumgartner
[1]. However, as mentioned in Section 1, Baumgartner’s calculus employs purifying
substitutions, of which generation cannot be automated. This is why we are going
investigate on an appropriate redundancy concept for (rigid) clausal tableaux in
general, in the next section.

3. Redundancy for (Rigid) Clausal Tableaux

In this section, we are going to formulate a redundancy concept for clausal
tableaux in general, including those which are not “purified”, i.e. of which the
literals may share variables. For example, Kühn’s rigid hyper tableau calculus [7]
and Kovásznai’s multi-hyper (hyperS) tableau calculus [6] employ such tableaux.
The formula represented by such a clausal tableau can be written as a conjunction
of not by all means pure clauses, and a redundancy concept for such clauses [6] can
be specified according to the following theorem:

Theorem 3.1 (Redundancy w.r.t. Disjunction). Let A and B1, . . . , Bk be formu-
las, k > 1. If

FV(A) ∩ FV
(
{B1, . . . , Bk}

)
= ∅

and there is a substitution σ for some Bi such that Aσ = Bi then

A ∨
∨
Bi ∼

∨
Bi.

As compared to Theorem 2.2, the above theorem, which is proved in [6], is more
restrictive since it stipulates that A must not share any free variable with any Bi.
This kind of restriction is inherited by the next theorem, which is about redundancy
for (rigid) clausal tableaux.

Consider a clausal tableau T as a tree in Figure 1, where L1, . . . , Lk are literals
(k > 1), b1, . . . , bk, b are subbranches (which might be empty), and t1, . . . , tk, t
are subtableaux (which also might be empty). As can be seen in the figure, the
following facts hold:

• L1, . . . , Lk are located in distinct branches (i.e. any branch of T contains at
most one Li).

• Each bi is the subbranch leading from the root to Li.
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• Each ti, where 2 6 i 6 k, is the maximal subtableau which has Li in the
root.

• We designate a branch in the maximal L1-rooted subtableau, and denote it
by b. The set of all the other branches of the same subtableau is denoted by
t1.

• t denotes the set of all those branches of T which do not contain any Li.

L1

t1

L2

t2

Lk

tk

. . .

b

⊤

b1 b2 bk

t

Figure 1: Rigid clausal tableau

b1, . . . , bk, b represent conjunctions, to which we refer also as b1, . . . , bk, b, respec-
tively. Similarly, t1, . . . , tk, t represent disjunctions, which are referred to by
t1, . . . , tk, t, respectively. In the following theorem, in fact, the redundancy of
clauses w.r.t. the branch B = b1 ∪ {L1} ∪ b is investigated.

Theorem 3.2. Let T be a clausal tableau in the form that can be seen in Figure 1,
where

• let B denote the branch b1 ∪ {L1} ∪ b;

• let C denote the clause L1 ∨ L2 ∨ · · · ∨ Lk, and let FV(C) ∩ FV(t) = ∅.

The following facts hold:

1. If Ĉ is a new instance of C then

F(T ) ∼ F
(
T +B Ĉ

)
.

2. If D a clause such that Ĉσ ⊆ D for a substitution σ then

F(T ) ∼ F
(
T +BD

)
.

Proof. F(T ) can be written in the following equivalent form:

t ∨
(
b1 ∧ L1 ∧ (b ∨ t1)

)
∨

k∨

i=2

(bi ∧ Li ∧ ti)
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≀

t ∨ (b1 ∧ L1 ∧ b) ∨ (b1 ∧ L1 ∧ t1) ∨
k∨

i=2

(bi ∧ Li ∧ ti)

≀

t ∨ (b1 ∧ L1 ∧ b) ∨
k∨

i=1

(bi ∧ Li ∧ ti) (3.1)

The two statements of the theorem are proved as follows:

1. F
(
T +B Ĉ

)
can be written in the following equivalent form:

t ∨
(
b1 ∧ L1 ∧ b ∧ Ĉ

)
∨

k∨

i=1

(bi ∧ Li ∧ ti),

which we can use in the following equivalent form, since the new clause
instance Ĉ does not share any variable with any literal in T :

t ∨ (b1 ∧ L1 ∧ b ∧ ∀Ĉ) ∨
k∨

i=1

(bi ∧ Li ∧ ti). (3.2)

Let us prove the following facts for any model M:

(a) ifM |= (3.2) then M |= (3.1): this fact evidently holds.

(b) ifM |= (3.1) then M |= (3.2):
Let us rewrite the formula (3.1). First, we rewrite the subformula

(b1 ∧ L1 ∧ b) ∨
k∨

i=1

(bi ∧ Li ∧ ti)

by employing the following rule of distributivity as many times as pos-
sible:

X ∨ (Y ∧ Z) ∼ (X ∨ Y ) ∧ (X ∨ Z).

So, we get a conjunction of several formulas, including
∨k

i=1 Li, which
is actually C itself.
By assumption,M |= (3.1), i.e.M |= ∀(3.1). Let us rewrite the formula
∀(3.1):

∀
[
t ∨
(( k∨

i=1

bi

)
∧ · · · ∧

( k∨

i=1

Li

)
∧ · · · ∧

(
b ∨

k∨

i=1

ti

))]

≀
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∀
[(
t ∨

k∨

i=1

bi

)
∧ · · · ∧

(
t ∨

k∨

i=1

Li

)
∧ · · · ∧

(
t ∨ b ∨

k∨

i=1

ti

)]

≀

∀
[
t ∨

k∨

i=1

bi

]
∧ · · · ∧ ∀

[
t ∨

k∨

i=1

Li

]
∧ · · · ∧ ∀

[
t ∨ b ∨

k∨

i=1

ti

]

≀
· · · ∧ ∀

(
t ∨ C

)
∧ . . .

≀ ←− since FV(C) ∩ FV(t) = ∅
· · · ∧ (∀t ∨ ∀C) ∧ . . .

Hence, for any modelM such that M |= (3.1), it holds that

M |= ∀t ∨ ∀C.

Thus, there are two cases:

i. M |= ∀t: in this case,M |= (3.2) evidently holds.
ii. M |= ∀C:

It is to prove that ifM |= (3.1)̺ thenM |= (3.2)̺, for any valuation
̺ overM. It is sufficient to prove this fact for only such valuations
̺ that

M |= (b1 ∧ L1 ∧ b)̺

(for other valuations, the proof is trivial). Because of this fact –
and since M |= ∀C, and hence M |= ∀Ĉ –, the following fact also
holds:

M |= (b1 ∧ L1 ∧ b)̺ ∧ ∀Ĉ.

As a trivial consequence,M |= (3.2)̺ holds.

2. The formula F
(
T +BD

)
can be written in the following equivalent form:

t ∨ (b1 ∧ L1 ∧ b ∧D) ∨
k∨

i=1

(bi ∧ Li ∧ ti). (3.3)

It is to prove for any model M that

(a) ifM |= (3.3) then M |= (3.1): this fact evidently holds.

(b) ifM |= (3.1) then M |= (3.3):
According to 1., it holds that (3.1)∼(3.2). We show that ifM |= (3.2)̺
then M |= (3.3)̺, for any modelM and any valuation ̺ overM.



72 G. Kovásznai

It is sufficient to prove this fact for only such modelsM and such valu-
ations ̺ that

M |= (b1 ∧ L1 ∧ b ∧ ∀Ĉ)̺

(for other models and other valuations, the proof is trivial). This fact
can be reformulated as follows:

M |= (b1 ∧ L1 ∧ b)̺ ∧ ∀Ĉ.

Hence,

M |= ∀Ĉ,

and hence,

M |= ∀(Ĉσ).

Since Ĉσ ⊆ D, it holds that

M |= ∀D.

Thus,

M |= (b1 ∧ L1 ∧ b)̺ ∧ ∀D

also holds, which implies that

M |= (b1 ∧ L1 ∧ b ∧D)̺.

As a trivial consequence,M |= (3.3)̺ holds.

�

In order to characterize the clause C in the above theorem, let us introduce the
following concept:

Definition 3.3 (Separate Branch Clause). Let T be a clausal tableau. Let
L1, . . . , Lk (k > 1) be literals in T such that

1. any branch of T contains at most one Li;

2. for each branch B of T such that B does not contain any Li, it holds that

FV
(
{L1, . . . , Lk}

)
∩ FV(B) = ∅.

{L1, . . . , Lk} is a separate branch clause of any branch containing some Li.

According to the above theorem, the following redundancy concept can be for-
mulated for any clausal tableau:
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Definition 3.4 (Redundancy w.r.t. a (Rigid) Clausal Tableau Branch). A clause
D is redundant w.r.t. a branch B of a clausal tableau T iff there is an L ∈ B and
there is a separate branch clause C of B such that C contains L and the following
statement holds: some subclause of D is an instance of a new instance of C.

For a clausal tableau calculus which has such a derivation rule that provides
the generation of new instances of separate branch clauses, the above redundancy
concept can be employed.

For instance, Kühn’s rigid hyper tableau calculus [7] and Kovásznai’s multi-
hyper tableau calculus [6] employ rigid variables in order to eliminate purifying
substitutions from hyper tableaux. Kühn’s calculus provides the generation of new
instances of so-called branch clauses [7], which are not by all means “separate”, i.e.
they may share variables with the rest of the tableau. The main problem with
Kühn’s calculus is that the generation of branch clauses in general destroys sound-
ness, and hence this calculus is not sound. Futhermore, neither the redundancy
concept for purified clausal tableaux nor the one for (rigid) clausal tableaux can be
employed.

Kovásznai’s multi-hyper tableau calculus eliminates purifying substitutions
from hyper tableaux successfully, i.e. it is sound and complete in first order logic.
But it does not support the generation of new instances of separate branch clauses,
either. This is why it cannot employ the above redundancy concept. It would be
expedient to improve the multi-hyper tableau calculus to be able to generate new
instances of separate branch clauses, without losing soundness and completeness.

4. Summary

In this paper, we proposed a redundancy concept for (rigid) clausal tableaux,
and proved that it was sound. We showed how rigid variables complicated the
redundancy check, and introduced a simple redundancy criterion for purified clausal
tableaux. However, the generation of purifying substitution cannot be automated,
this is why we investigated on a redundancy concept for clausal tableaux in general.
This concept is not completely general in the sense that only such a clausal tableau
calculus can employ it which has a derivation rule that provides the generation of
new instances of separate branch clauses. We pointed out that it would have been
expedient to incorporate such a rule in the multi-hyper tableau calculus in order
to get a sound and complete clausal tableau calculus which had an appropriate
redundancy criterion and hence could be used in practice.
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