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Abstract
More then 10 years now the modeling of High Speed Network Traffic has

been a challenging problem for workers in statistics and engineering. One of
the basic ideas in stochastic analysis which revolutionized our understanding
of network traffic is the long-range dependence (LRD) and the self-similarity
of the traces. In this talk we are analyzing traces measured by different
Internet Providers during the last ten years or so. The question we address is
the changing the parameters of self-similarity of the traces in accordance with
the technology change. For this purpose the model of Smoothly Truncated
Lévy Flights is applied.

1. Introduction

It is more then 10 years now that the first serious data based model of Internet
traffic has been introduced, see [9]. After that it has been justified by several
authors that the classical Erlang model for communication systems does not work
in this case but the self-similar stochastic processes should be used for modeling
instead. In the meantime there has been several changes in the technology as well as
the usage of the Internet and the question arising whether these changes influenced
the model of wide-area network traffic, [2, 6, 18, 3]. In this paper we introduce a
particular model, namely the Smoothly Truncated Lévy Flights for understanding
these possible changes.

1.1. Self-similar processes
Self-similar processes have particular importance in modeling network traffic

traces. Self-similarity is a distributional property of the series in hand. The stochas-
tic process Y (t) is called self-similar if for all a > 0 real numbers,

Y (at)
d
= aHY (t) , (1.1)
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with some positive H , where d
= means the equality of finite-dimensional distri-

butions. H is called Hurst exponent. The prototype of these processes is the
standard Brownian Motion (BM). It is self-similar with Hurst exponent 1/2 and
the corresponding series, i.e. its increments series is independent identically dis-
tributed Gaussian series, hence it is a Lévy process. Now starting from BM there
are two ways, at least, to follow keeping the self-similar property alive. One is Lévy
process with α−stable distributed increments. It is appropriate for modelling the
inter-arrival time when α ∈ (0, 1). Several difficulties arising at statistical usage
of these processes since there are no moment exists for α−stable distribution if
α ∈ (0, 1). We are taking over these problems applying truncated Lévy Flights
which are can be close to the α−stable distribution, as we shall show, and having
moments at the same time.

The other way leads form BM to the Fractional Brownian Motion (FBM) which
is a “linear” transformation of BM. FBM is self-similar it has stationary Gaussian
increments and Hurst exponent from the range (0, 1). Further nonlinear transfor-
mations of FBM provide stationary self-similar non Gaussian processes with higher
order moments exist, for instance the Rosenblatt process and so on, see [11]. These
processes are working well for modelling the high speed network traffic, i.e. the
series of length. There are some delicate connections between long range depen-
dence and self-similarity. Namely, self-similar processes have long range dependent
increments and vice versa a long range dependent process is asymptotically self-
similar. In this sense long range dependence can be considered a generalization
of self-similarity. Some further more flexible generalizations are the multi-fractals,
where the Hurst exponent might change with the aggregation level. We considered
this problems in [15], where we analyzed traffic traces captured in two different net-
works: OC48 (2.5 Gbps) traffic collected by CAIDA (The Cooperative Association
for Internet Data Analysis ).

Through the investigations we prefer cumulants rather than absolute moments
for describing the models because the scaling properties should not change with
additive constants and with summing up of independent copies of a process. For
non Gaussian processes cumulants contain some additional information about the
distributional properties.

2. High speed network data

The following traces will be considered.

2.1. Traffic data repositories and traces therein

The Internet Traffic Archive1 is a moderated repository to support wide-
spread access to traces of Internet network traffic, sponsored by ACM SIGCOMM.
There are the traces currently in the archive, last updated April 29, 2000.

1http://ita.ee.lbl.gov/index.html
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2.1.1. Historical Traces

1. BC -x: 1 million-packet traces of LAN and WAN traffic seen on an Ethernet.
The trace BC-pOct89 began at 11:00 on October 5, 1989, and ran for about
1759.62 seconds. These two traces captured all Ethernet packets. Ethernet
packet arrival. Each line contains a floating-point time stamp (representing
the time in seconds since the start of a trace) and an integer length (repre-
senting the Ethernet data length in bytes).The hardware clock had an actual
resolution of 4 microseconds [10, 8].

2. LBL-TCP-3 - 2 hours of wide-area TCP packets. The trace ran from 14:10
to 16:10 on Thursday, January 20, 1994, capturing 1.8 million TCP packets
(about 0.0002 of these were dropped). The tracing was done on the Ethernet
DMZ network over which flows all traffic into or out of the Lawrence Berkeley
Laboratory, located in Berkeley, California [13].
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3. LBL-PKT - 1 hour-long traces of all wide-area packets. The trace lbl-pkt-4
ran from 14:00 to 15:00 on Friday, January 21, 1994, and lbl-pkt-5 ran from
14:00 to 15:00 on Friday, January 28, 1994. Each captured 1.3 million TCP
packets. The tracing was done on the Ethernet DMZ network over which
flows all traffic into or out of the Lawrence Berkeley Laboratory, located in
Berkeley, California [13].

4. DEC-PKT -n: The traces were gathered at Digital’s primary Internet access
point, which is an Ethernet DMZ network operated by Digital’s Palo Alto



38 Gy. Terdik

research groups. These traces each contain an hour’s worth of all wide-area
traffic between Digital Equipment Corporation and the rest of the world.
Timestamps have millisecond precision. Timestamps a few microseconds
apart were simultaneously timestamped by the kernel. Dec-pkt-4 started
14:00, Thu March 9th, 1995, 5.7 million dropped 1,488 packets [13].

2.1.2. MAWI Working Group Traffic Archive

Packet traces from WIDE backbone of Japan2. This is a traffic data repository
maintained by the MAWI Working Group of the WIDE Project [1]. There are
some 10Gbps connection to US as well. The traffic traces in hand are collected at
the sampling point B. Samplepoint-B, daily trace of a trans-Pacific line (18Mbps
CAR on 100Mbps link a link to CA), 2000, 2001, 2002, 2003, 2004, 2005, 2006.
(This link was terminated on 2006/07/01). From each year we have chosen one
day namely April 24th (Saint George Day).

2.2. Smoothly Truncated Lévy Flights

The Truncated Lévy Flights were introduced by Mantegna and Stanley [12]
as models for random phenomena, which exhibit properties at small time-scales
similar to those of self-similar Lévy processes. The Truncated Lévy Flights have
distributions with cutoffs at large time-scales, i.e. they have finite moments of any
order. Building on Mantegna and Stanley’s ideas Koponen [7] defined the Smoothly
Truncated Lévy Flights (STLFs), which had the advantage of a nice analytic form.
Independently, the same family of distributions was described earlier by Hougaard
[4] in the context of a biological application. The concept of the more general
distribution, called tempered stable distribution, is due to Rosiński [14] (see e.g.
[17] and [16] for a partial history of these works).

Since the interarrival times are positive, we consider STLF with a totally asym-
metric distribution. It is given by the cumulant function (log of the characteristic
function)

ψX (u) = aΓ (−α) [(λ− iu)α − λα] , (2.1)

where α ∈ (0, 1) and λ, a > 0. A more general discussion of STLF is given in
Appendix C. This distribution depends on three parameters: the index α, the
truncation parameter λ, and the scale parameter a. These parameters provide
some information about the position of the distribution in the following manner:

Property 1. If α and a are fixed and λ tends to zero, then the limit distribution
is a totally asymmetric α- stable distribution and the corresponding Lévy process
is self-similar.

Property 2. If λ and a are fixed and α tends to zero, then the limit distri-
bution is Gamma with parameters (a, λ). In particular, if a is 1, then the limit is
exponential, therefore the Lévy process is Poisson.

2http://two.wide.ad.jp/, http://tracer.csl.sony.co.jp/mawi/
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Property 3. If λ and α are fixed, then for small a the distribution is close to
the α- stable distribution and for large a the distribution is close to Gaussian. More
precisely, moments of any positive order ̺ (including fractional) have the following
asymptotics:

logE(|X |̺) ∼
{

min(̺/α, 1) log a+ c1, as a→ 0;
̺ log a+ c2, as a→∞.

For m > 1, the cumulants, derived from the cumulant function (2.1), are given in
terms of the parameters α, λ, and a, namely,

cumm (X) = aλα−mΓ (m− α) . (2.2)

See [17, 16, 15] for details.

2.3. Estimating the parameters of STLFα(a, 0, λ)

Take the logarithm of

cumm (X) = aλα−mΓ (m− α) .

and obtain

log cumm (X) = log a+ (α−m) logλ+ log Γ (m− α) . (2.3)

Plug the estimated cumulants ĉumm into the left side of equation (2.3), then we
have three unknowns a, λ, and α. In order to find the parameter values for the
best fitting start with the system of equations when m = 2, 3, 4, i.e.

log ĉum2 (X) = log a+ (α− 2) logλ (2.4)
+ log Γ (2− α) ,

log ĉum3 (X) = log a+ (α− 3) logλ (2.5)
+ log Γ (3− α)
= log a+ (α− 3) logλ

+ log (2− α) + log Γ (2− α) ,
log ĉum4 (X) = log a+ (α− 4) logλ (2.6)

+ log Γ (4− α)
= log a+ (α− 4) logλ

+ log (3− α) + log (2− α)
+ log Γ (2− α) .

The difference of the first two equations (2.4–2.5) gives

log ĉum3 (X)− log ĉum2 (X) = − logλ+ log (2− α)
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= log
2− α
λ

,

hence

α = 2− λ ĉum3 (X)

ĉum2 (X)
.

Similarly from the last two equations (2.5–2.6)

α = 3− λ ĉum4 (X)

ĉum3 (X)
,

therefore we obtain

λ̂ =
ĉum3 (X) ĉum2 (X)

ĉum4 (X) ĉum2 (X)−
[
ĉum3 (X)

]2 ,

α̂ = 2−
[
ĉum3 (X)

]2

ĉum4 (X) ĉum2 (X)−
[
ĉum3 (X)

]2 ,

â =
ĉum2 (X)

λ̂α̂−2Γ (2− α̂)
.

We obtain more precise estimations for the parameters, if we use these estimates as
initial values and refine the estimates using nonlinear least squares, which minimizes

8∑

m=1

[
cumm (X)− aλα−mΓ (m− α)

]2
.

3. Results and conclusion

We have fitted the STLF to all the traces mentioned above. For instance from
the BCp89 trace estimated the parameters we plotted the theoretical and estimated
cumulants up to order 8.
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The estimated parameters for the historical traces are the following.

Trace α̂ λ̂ â
BCpOct89 0.67506 46.6337 0.00215

DECpkt4tcp95 0.99249 7.64795 0.00001
LBLPkt5TCP94 0.56064 42.77707 0.01406

LBLTCP94 0.48692 70.00397 0.0209

Since the estimated scaling parameters relatively small we conclude that these
traces are closer to the self-similar process then the following Wide Traces. Where α
is smaller showing the tendency of approaching the Gamma distribution according
to the Poisson process.

Trace α̂ λ̂ â
WideB2k1042414 0.14128 2286.746 0.31807
WideB2k2042414 0.11951 2979.278 0.38293
WideB2k3042414 0.06634 4608.418 0.4292
WideB2k4042414 0.1966 3996.299 0.26282
WideB2k5042414 0.0522 3060.139 0.53002
WideB2k6042414 0.11967 4436.569 0.31544

The conclusion is that changing of the technologies implies the some change in
models, therefore we must monitor the traces and reevaluate our models continu-
ously, [5, 2].



42 Gy. Terdik

References

[1] Cho, K., Mitsuya, K., Kato, A., Traffic data repository at the WIDE project, In
Proceedings of FREENIX Track: 2000 USENIX Annual Technical Conference, San
Diego, CA, USA, June 18–23 (2000). USENIX Association.

[2] Figueiredo, D., Liu, B., Feldmann, A., Misra, V., D., Towsley, Willinger,
W., On TCP and self-similar traffic, Performance Evaluation, (2-3):61, (2005), 129–
141.

[3] Gong, W-B., Liu, Y., Misra, V., Towsley, D., Self-similarity and long range
dependence on the internet: A second look at the evidence, origins and implications,
Computer Networks, 48 (Issue 3), (June 2005), 377–399.

[4] Hougaard, P., Survival models for heterogeneous populations derived from stable
distributions, Biometrika, 73(2), (1986), 387–396.

[5] Karagiannis, T., Molle, M., Faloutsos, M., Long-range dependence ten years
of internet traffic modeling, Internet Computing, IEEE, 8(5), (2004), 57–64.

[6] Karagiannis, T., Molle, M., Faloutsos, M., Broido, A., A nonstationary
poisson view of internet traffic, In Proceedings of INFOCOM 2004, vol. 3, (March
2004), 1558–1569.

[7] Koponen, I., Analytic approachto the problem of convergence of truncated Lévy
flights towards the Gaussian stochastic process, Phys. Rev. E., 52, (1995), 1197–1199.

[8] Leland, W. E., Taqqu, M. S., Willinger, W., Wilson, D. V., On the self-
similar nature of ethernet traffic (extended version), IEEE/AC Transactions on
networking, 2(1), (1994), 1–15.

[9] Leland, W. E., Taqqu, M. S., Willinger, W., Wilson, D. V., Statisti-
cal analysis and stochastic modeling of self-similar data traffic, In J. Labetoulle
and J. W. Roberts, editors, The Fundamental Role of Teletraffic in the Evolution
of Telecommunications Networks, Proceedings of the 14th International Teletraffic
Congress (ITC ’94), Elsevier Science B.V., Amsterdam, (1994), 319–328.

[10] Leland, W. E., Wilson, D. W., High time-resolution measurement and analysis
of LAN traffic: Implications for LAN interconnection, In Proceedings of the IEEE
NFOCOM’91, Bal Harbour, FL, (1991), 1360–1366.

[11] Major, P., Multiple Wiener–Itô integrals, volume 849 of Lecture Notes in Mathe-
matics, Springer–Verlag, New York, (1981).

[12] Mantegna and H. E. Stanley, R. N., Stochastic processes with ultraslow con-
vergence to a Gaussian: The truncated Lévy flight, Phys. Rev. Lett., 73, (1994),
2946–2949.

[13] Paxson, V., Floyd, S., Wide-area traffic: The failure of poisson modeling,
IEEE/ACM Transactions on Networking, 3(3), (June 1995), 226–244.

[14] Rosinski, J., Tempering stable processes, Technical report, Department of Mathe-
matics of the Univ. of Tennessee in Knoxville, Tennessee, (2004).



Internet traffic v. technology change in 10 years 43

[15] Terdik, Gy., Gyires, T., Stochastic modelling of network traces, Technical
Report, UD, (2006).

[16] Terdik, Gy., Woyczynski, W. A., Rosiñski measures for tempered stable and
related ornstein-uhlenbeck processes, Probability and Mathematical Statistics (PMS),
Urbanik, (2006).

[17] Terdik, Gy., Woyczynski, W. A., Piryatinska, A., Fractional- and integer-
order moments, and multiscaling for smoothly truncated lévy flights, Physics Letters
A, 348, (2006), 94–109.

[18] Wisitpongphan, N., Peha, J., Effect of TCP on self-similarity of network traffic,
In Proceedings of 12th IEEE (ICCCN), Dallas, Texas, (2003), International Confer-
ence on Computer Communications and Networks, 370–373.


