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Abstract

Considering documentation systems like HTML, Latex or MS Word a
document consists of a not necessarily contiguous sequence of characters and
structural, probably also typographical mark-ups. Removing mark-ups pro-
duces a plain text. Removing punctuation and also whitespaces a sequence
of non-whitespace characters remains. Inserting mark-ups, punctuation or
whitespace characters into a plain text or pure charcter string a kind of doc-
ument or structured text arises. We face some analogue also in programming:
e.g. the complex value of a particular C-structure typed variable in the ex-
ecutable appears as a contiguous sequence of bytes which holds information
neither on the C -structure nor its components’ types.

In Container Model two structural operations namely composing finite-
length tupples and composing finite-length sequences, further on a set U
whose elements are all finite-length tupples and sequences recursively com-
posed from non-negative interegers are considered. In addition, we consider
finite-length sequences of bytes, called raw data. Any non-negative integer
is mapped to shortest raw datum that represents its binary scaled value,
and any particular u ∈ U is mapped to the raw datum that is composed
from the raw data of its components by putting them after each other in the
order of apperance. The mapping above induces a partition over U whose
elements are called containers. An arbitrary structure-expression of a raw
datum using the srtuctural operations above identifies some subset of the con-
tainer the raw datum identifies. Correlations between relationships among
structure-expressions and those among the corresponding container subsets
are detected.
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1. Introductuction

This paper brings data, considered as computer-processable codes of notions
or objects of our real world, into focus. Data’ real content, i.e. data semantics
is revealed by the all-time model the components of that, and even relationships
between them data actually code. Data semantics, in general, may be – and is
actually viewed through three kinds of glasses: structural properties of data occur-
rences, the operational view, i.e. the data processing made by computer programs,
and displaying data as real world notions or objects, usually also done by computer
programs.

Coherence between codes’ structural properties and their real content can be
in any area detected, even though, no substantive general rule for that is not yet
recovered. Binary images of executables executed by (today still) von Neumann’s
Principle based computers look as single contiguous byte sequences. The for us
unvisible structural properties of those is given by the continually changed values
of registers of CPU.

1.1. Problem

Consider some finite-length byte sequence, and suppose bytes and particular
contiguous sequences of bytes (e.g. words) codes real world’s things, and the total
codes some complex real world’s objects. Such objects may be some complex values
of some structure typed variables in C programs, more exactly, the corresponding
part of their executables. Considering the latter, it is obvious that chopping up
some finite-length byte sequence to smaller units of particular lengths, different
kind of structuring of data may be obtained, and each of them, according to C
scalar types, may occasionally come from more than one different C structure type.
In connection of the above, one may put the question if there is any relationship
between the set of different C structures yielding the same binary complex value
(i.e. a given byte sequence) and the set of all possible different dismemberments of
the byte sequence in question. To examine the problem above, a formal algebraic
model is set up.

1.2. Base concepts

Definition 1.1. Let Γ be a recursively enumerable set, and H be a finite set of
operations that organize things into particular structures. Elements of Γ and H
are called individuals and contacts, respectively. Each H ∈ H groups finite number
of things declaring what is called H-contact between those, named H-community.
Suppose, elements of H are strictly non-commutative, and non-associative opera-
tions1 Let h denote a mapping h : H → 2Γ∪H, called contact-rule. Introducing
the sets Γh(H) = h(H) ∩ Γ, and Hh(H) = h(H) ∩ H, contact-rule h is a mapping

1Operation like e.g. “composing a set of things” is out of our consideration here.
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such that 1 > |Γh(H)| and H ∈ Hh(H). Rule h defines for ∀H ∈ H the set of in-
dividuals (Γh(H)), and the set of contacts (Hh(H)) the communities established by
elements from the latter together with individuals from Γh(H) may constitute legal
(i.e. allowable by h) H-communities. For ∀H ∈ H the set of all H-communities are
denoted by LHΓ . For any cH ∈ LHΓ , |cH | denotes the number of things groupped
by H , and for each 1 6 k 6 |cH | integer, cH [k] denotes the kth member of the
community, regardless whether cH [k] ∈ Γ, or cH [k] is some legal H

′
-community,

for some H
′ ∈ Hh(H). The 3-tuple A = (Γ,H,h) is named community-autonomy

A. The set UA = {∅} ∪ Γ ∪ ∪{LHΓ : H ∈ H} is called A-autonomous universe or
briefly A-universe.

Definition 1.2. Introducing the set B = {d∅, 00000000, 00000001, . . . , 11111111},
let <dom;> denote the free semi-group over generator set B. Elements of B
but d∅ are called bytes, d∅ is called “empty-byte” (the byte sequence of length 0),
and elements of dom are called raw data. As seen above, no particular nota-
tion is introduced for the semi-group operation called multiplying. For some data
di0 , . . . , dik ∈ dom, the product of them in the given order is denoted by

∏k
j=0 dij .

For any d ∈ dom, the length of d is the number of its factors from the set B−{d∅},
and denoted by ||d||.

Definition 1.3. Let A = (Γ,H,h) be an autonomy, and UA the corresponding
A-universe. Let ω denote the set of non-negative integers, and let s : ω → Γ be a
particular enumeration of set Γ. Let t : ω → dom denote the bijection that to each
non-negative integer n assigns the shortest byte sequence that, as a binary scaled
whole number, has a value of n. Let τ : UA → dom be defined for ∀u ∈ UA as

τ(u) =





d∅ if u = ∅

t(s−1(u)) if u ∈ Γ

∏|u|
k=1 τ(u[k]) if u ∈ ⋃H∈H LHΓ

Definition 1.4. Elements of the set χdom = {{u ∈ UA : τ(u) = d} : d ∈ dom}
are called containers of UA. Introducing the mapping ϑ : dom → χdom for each
u ∈ UA as ϑ(d) = {u ∈ UA : τ(u) = d}, the container coded by d ∈ dom is referred
as ϑ(d).

2. Structure semantics

To introduce structure-semantics, a very simple and minimal autonomy and
the corresponding universe, denoted by U , is established here. From now on, as
for Γ, the set ω, and as for the elements of H, operations that compose finite
length sequences resp. finite length tuples are taken. Let contact-rule h be the “all-
is-allowed” regulation, i.e. any tuples resp. any sequences may contain arbitrary
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elements from the set ω ∪ {∅} and also finite length tuples resp. finite length se-
quences recursively composed from those. Tuples resp. sequences of U are denoted
(u0, . . . , uk) resp. {u0, . . . , ur}.
Definition 2.1. For arbitrary (1 <)r ∈ ω and for containers U1, . . . , Ur ∈ χdom,
the product of them is defined as

∏r
1 Ui = ϑ(

∏r
1 ϑ

−1(Ui)).

Proposition 2.2. Set χdom together with the above defined container multiply-
ing constitutes a semi-group < χdom; · > which is isomorphic with semi-group
< dom;>.

2.1. Structure semantics expressions
To structuring raw data, we introduce a parenthesizing convention. Parenthe-

sizing has two roles. One is to denote which atomic factors (i.e. elements of dom
that are not products of factors) are considered constituting a particular raw da-
tum, and the other one is to indicate into which structure (finite-length tuple or
finite-length sequence) factors are grouped. We will call any post-parenthesized
datum d ∈ dom a structure expression of d, if the following is kept.

(1) Each atomic factor is parenthesized in one depth. This is to define atomic
factors of d.

(2) Any product is always parenthesized in one resp. two depth that indicates
that its factors (either atomic factors or some products recursively built from
atomic factors) constitute a finite-length tuple resp. finite-length sequence.

(3) A parenthesis containing nothing represents the atomic factor (d∅). No fur-
ther redudant parenthesizing but those occuring in (1)-(3) are allowed and/or
obliged.

Since no one-component-tuples as well as no one-member-sequences are formally
contained by U , the parenthesizing convention introduced above is unambiguous.
A post-parenthesized raw datum may so be considered as the code of a subset
of elements of a container product constituting particular structure indicated by
parenthesizng, i.e. a particular subset of ϑ(d). Referring to raw data as hexadecimal
scaled integers, let us consider e.g. parenthesized expressions ((0a)(ac5cde)) and
(((ac)(ac5cde))) of datum 0aac5cde ∈ dom, which code the sets

{(u, v) ∈ ϑ(0aac5cde) : u ∈ ϑ(0a), v ∈ ϑ(ac5cde)} and

{{u, v} ∈ ϑ(0aac5cde) : u ∈ ϑ(0a), v ∈ ϑ(ac5cde)},
respectively.

Definition 2.3. For arbitrary d ∈ dom, the set of its all structure-semantics
expressions are denoted by dK . For each K ∈ dK , the associated subset of container
ϑ(d) is denoted by K(d), and called the structure-semantics of raw datum d given
by K. The set σd = {K(d) ∈ 2ϑ(d) : K ∈ dK} is called the structure-semantics
domain of raw datum d.
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Definition 2.4. Let d ∈ dom arbitrary raw datum and K,K′ ∈ dK . K′
is said

finer than K, if K′
can be obtained from K by replacing one atomic factor or

more together with their one depth parenthesis by an arbitrary structure semantics
expression of the factor(s) considered. If K′

is finer than K than K is coarser than
K′

. The previous resp. latter is denoted by K′ � K resp. K � K′
.

Lemma 2.5. For arbitrary d ∈ dom relation � is a partial order over set dK .
The poset (dK ,�) contain no least element. The greatest element is expression
(d).

A possible non-trivial refinement of expression ((0a)(ac5cde)) is the expression
((0a)(((ac)(5c)(de)))) that is also shown by Figure 1 using graph representation
instead of algebraic one. Figure 2 shows two structure-semantics expression, for
those the greatest lower bound (GLB) exists. Graph representation of structure-
semantics expressions are ordered labeled graphs. Edge and node labels represent
legal kind of structuring and elements of dom, respectively.

r
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c
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c

c
c c
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Figure 1: Expression ((0a)(ac5cde)) and its refinement ((0a)(((ac)(5c)(de))))

Lemma 2.6. For arbitrary d ∈ dom, and K,K′ ∈ dK , the greatest lower bound
K∧K′

exists iff K(d) ∩ K′
(d) 6= ∅.

Definition 2.7. For arbitrary d ∈ dom, expressions K,K′ ∈ dK are said indepen-
dent, if K(d) ∩ K′

(d) = ∅.

Theorem 2.8. For arbitrary d ∈ dom, (dK ,�,∨) resp. < dK ;
∨
> constitutes

a join semi-lattice resp. idempotent and commutative semi-group containing unit
element expression (d).

Definition 2.9. Any d ∈ dom, may be considered a bijection d : dK → σd defined
for each K ∈ dK as d(K) = K(d). Bijection d induces a operation on set σd. The
induced operation is denoted by ⊔, and for arbitrary K1,K2 ∈ dK , defined as
d(K1) ⊔ d(K2) = d(K1

∨
K2).
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Figure 2: Expressions refining different factors of each other guarantees the existence of
their GLB

Theorem 2.10. For arbitrary d ∈ dom, algebraic structures < σd;⊔ > resp.
(σd,⊆,⊔) constitutes idempotent and commutative semi-group resp. join semi-
lattice containing unit element container ϑ(d). Algebraic structures < σd;⊔ >
resp. (σd,⊆,⊔) are isomorphic with algebraic structures (dK ,

∨
) resp. (dK ,�,∨),

by bijection d.

Definition 2.11. Let d ∈ dom, and U ∈ U be an arbitrary subset of U . The set
σd|U = {s∩U : s ∈ σd} is called the U -constraint of σd. For arbitrary K ∈ dK the
expression denoted by Kd|U represents sructure-semantics K(d) ∩U ∈ σd|U , and is
called the U -constraint of expression K. U is called a constraint-range. U is a key-
range for expression K resp. σd, if |K(d) ∩U | = 1 resp. {s ∈ σd : |s∩U | = 1} 6= ∅.

Lemma 2.12. For arbitrary d ∈ dom, to any non-empty set K of pairwise inde-
pendent structure-semantics expressions, there exists a UK key-range.

2.2. Structure semantics schemata
Data local structure-semantics above can be generalized to particular subsets of

dom by introducing structur-semantics schemata. Structure-semantics schemata
are ordered coloured labeled graphs. Node labels are lengths of factors of data from
dom, edge labels are the position where the factors within data starts, and edge
coloures indicates the structure of factors in question. Using structure-semantics
schemata, arbitrary “parts” (i.e. factors of products) of data can be ignored. A
schema G is called exact resp. projection schema depending on whether only a
prefixed, if any, or some inside factors are ignored. Figures 3 resp. 4 shows a semi-
exact schema of 10 spoor-length and 8 projection-length resp. a projection schema
of 10 spoor-length and 5 projection-length. Figures 5 resp. 6 shows the projections
of datum 12349abcdef01a2b0fe0 according to schema on Figures 3 resp. 4. The
spoor-length of a schema is the sum of the labels of its initial edge and node,
and the projection-length is the sum of the labels of the leaves. Given a schema
G of spoor-length o, the set OS(G) = {d ∈ dom : ||d|| = o} is called the the
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Figure 3: Semi-egzakt structure-semantics schema
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Figure 4: Projection structure-semantics schema

spoor of schema G. A schema is called entirely exact if its spoor-length is equal
to its projection-length. Results acheived for data local structure-semantics can be
generalized for entirely exact schemata as follows.

Definition 2.13. For arbitrary d ∈ dom and entirely exact schema G, let d[G]
resp. d[G](d) denote the projection resp. the structure-semantics of datum d ac-
cording to G. Let further on Gp and domp denote the set of all entirely exact
schemata of spoor-length p and their common spoor. For arbitrary G ∈ Gp, the
set SG = ∪{d[G](d) ∈ σd : d ∈ domp} is called the structure-semantics of domp

according to G, and σdomp
= {SG : G ∈ Gp} is called the structure-semantics

domain of domp. For some G,G′ ∈ Gp, G
′

is said finer than G, and denoted by
G′ ⊑ G, if d[G′

] � d[G].

Theorem 2.14. For arbitrary p ∈ ω, relation ⊑ is a partial order over set Gp.
Algebraic structure (Gp,⊑) and (Gp,⊑,

∨
) contain no least element, the great-

est element for both is the schema that consists of the only initial edge and node
coloured by c and labeled by 0 and by p, respectively. < Gp;⊑> resp. (Gp,⊑,

∨
)

are idempotent and commutative semi-group resp. join semi-lattice containing the
above schema as unit element.

Definition 2.15. For arbitrary p ∈ ω, an operation denoted by ⊔ may be defined
on σdomp

as follows. For any G,G′ ∈ Gp, d[G](d) ⊔ d[G
′
](d) = d[G∨G′

](d).
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Figure 5: Projection of 12349abcdef01a2b0fe0 according to schema on figure
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Figure 6: Projection of 12349abcdef01a2b0fe0 according to schema on figure

Theorem 2.16. For arbitrary p ∈ ω, < σdomp
;⊔ > resp. (σdomp

,⊆,⊔ >) are
idempotent and commutative semi-group resp. join semi-lattice containing unit ele-
ment ϑ(domp) = ∪{vartheta(d) : d ∈ domp}. Algebraic structures < σdomp ;⊔ >
resp. (σdomp

,⊆,⊔ >) are isomorphic with < Gp;⊑> resp. (Gp,⊑,
∨
).

Further generalizations of structure-semantics can be achieved by introducing
constrainted structure-semantics schemata, and also the notion of panel schemata.
A panel schema is formally an arbitrary set of structure-semantics schemata. A
schema constraint is in turn an arbitrary subset of the universe. Given a panel
schema G, the spoor of G is defined as OS(G) = ∪{OS(G) : G ∈ G}. Given
arbitrary d ∈ OS(G), considering set Gd = {G ∈ G : d ∈ OS(G)}, the structure-
semantics of d by schema G is defined as d[G](d) = ∪{d[G](d) ∈ σd : G ∈ Gd}. The
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structure-semantics of set OS(G) is in turn SG = ∪{d[G](d) : d ∈ OS(G)}. From
now on we consider only (possible constrainted) entirely exact schemata or panel
schemata built from those, referring to them simply as entirely exact schemata.

2.3. Operational- and structure-semantics

Data’ operational semantics may be considered as operations given by data
types. To make connection between structure-semantics and operational semantics
visible, a data type that show structural properties is here defined as a three-tuple
(G, (A,M), µ), where G is an entirely exact structure-semantics schema, (A,M)
is some abstract algebra with its bearer set A, and a set M of operations on
A, and µ : SG → A is a mapping such that the induced partition over SG is
exactly {d[G](d) : d ∈ OS(G)}, or some coarser one. Notice according to the above
view of data types, the atomicity of a type depends on the operations of abstract
algebra (A,M). A type can be considetered as atomic type, if no operation can
yield any “particular part” of data of that type. The only “part” of such a type
definition that may be visible for Container Model, is the spoor of schema G, and
the corresponding structure-semantics given by a partition over that, which may
only be used to identify the operational semantics but remains invisible.

Definition 2.17. Let G be an entirely exact schema, and let πT denote the parti-
tion {d[G](d) ∈ σd : d ∈ OS} or some coarser. The pair (G, πT ) is called a datatype
T over OS(G). Type T is said an object-like type if for each P ∈ πT , P consists of
only one element.

3. Conclusion

As for computer processed data, data semantics may be viewed from at least
three different aspects, namely: structural properties, operational view, and pre-
senting data as coded real world’s objects. The latter two, in general are given
by computer programs. Container Model (CM) is a formal algebraic model in or-
der to study structural properties of data semantics. Data model considered in
CM is a specialization of that in the logical and physical model in [1]-[3]. Beyond
results presented above, one may realize that edge colours of structure-semantics
schemata, and even JVM like virtual machines can be given as dom wide (data-)
types according to Definition 2.17. ConsideringH-contacts (Definition 1.1) as dom
wide (contact-)types, any particular schema may be represented by an edge colour
within another schema. Extending CM by introducing operations called destruc-
tors that resolveH-contacts, and considering both as operations of a graph algebra,
arbitrary transmutation on structre-semantics schemata may be achieved. Using
Generalized Document Data Model [4], operational- and structure-semantics can
be integrated by implementing structure-semantics schemata as XML documents.
Using GDDM, data independence of application programs can be ensured in a
higher level of abstraction, than that is done by DBMS today in use. That higher
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level abstraction data independence concludes the notion of applications’ autonomy
introduced in [4] later on formalized and studied in [5, 6].

References

[1] Benczúr, A., Adatkezelő rendszerek biztonsági problémái, Phd Dissertation, (1978).

[2] Benczúr, A., Adatbázis rendszerek hatékonyságvizsgálati modellje Kolmogorov al-
goritmikus információmennyisége alapján, Doctor of Sciences Dissertation, (1988).

[3] Benczúr, A., Információs rendszerek matematikai modellezéséről, Manuscript for
Students.

[4] Hernath, Zs., Vincellér, Z., Generalized Document Data Model for Integrating
Autonomous Applications, Proceedings of 6th International Conference on Applied
Informatics, January 27-31, 2004, Eger Hungary, Vol. II, (2004), 83-93.

[5] Benczúr, A., Hernáth, Zs., Porkoláb, Z., Autonomous Application – Towards
a Better Data Integration Model, Advences in Databases and Information Systems,
Proceedings of the 9th East-European Conference, ADBIS 2005, Tallinn, September
12-15, 2005, (2005), 150–163.

[6] Benczúr, A., Hernáth, Zs., Porkoláb, Z., LORD: Lay-Out Relationship and
Domain Definition Language, Advances in Databases and Information Systems, Local
Proceedings of the 10th East-European Conference, ADBIS 2006, 3-7 September, 2006,
Thessaloniki, Greece, (2006), 215–230.

Zsolt Hernáth
Pázmány Péter sétány 1/c.
H-1117 Budapest
Hungary


