
Proceedings of the 7 th International Conference on Applied Informatics
Eger, Hungary, January 28–31, 2007. Vol. 1. pp. 295–301.

Performance evaluation of large-scale data
processing systems

Attila Adamkó, Mátyás Arató, Gábor Fazekas, István Juhász

Department of Information Technology, University of Debrecen
e-mail: {adamkoa,arato,fazekasg,pici}@inf.unideb.hu

Abstract

Recently, integrated data processing systems have obtained more and
more highlight as a result of their continuously increasing strategic role. The
fast penetration of these systems requires new approaches in examining and
measuring the performance with main respect to the utilization and use of
various database systems (and technologies) with statistical methods. In the
analysis we would like to find the characteristics which could be used to
support the performance evaluation from various aspects. Hereinafter, we
present the most useful approaches used for this evaluation process:

• Availability

• Reliability

• Advantages and disadvantages of release changes

• User satisfaction

• Validation

• System parameterization.

Based on these viewpoints we can find answers concerning efficiency, ini-
tiation time and performance information both in the present and in the
future. Moreover we can compare these systems, and hopefully we will be
able qualify these systems.

Categories and Subject Descriptors: D.2.8 [Software Engineering]: Metrics;
C.4 [Performance of Systems]; G.3 [Probability and Statistics]

Keywords: Performance evaluation, measuring, metrics, data-processing sys-
tems

1. Introduction

As a result of the continuous evolution of data management technologies data
processing systems comprise even more and more functionality. Therewith, the

295



296 A. Adamkó, M. Arató, G. Fazekas, I. Juhász

amount of stored data is constantly increasing and we would like to use tools that
can manage and process this huge amount of data.

Nowadays several different integrated data processing system are available and
their strategic role is continuously increasing. These systems are mainly using the
Enterprise Resource Planning (ERP) term. A key ingredient of most ERP systems
is the use of a unified database to store data for the various system modules.

The fast penetration of these systems highlights the need of deeper investigation
on this area. In this paper we would like to find the determinant characteristics of
performance evaluation of these systems and to find answers concerning efficiency,
performance and reliability.

2. Performance

To start the investigation we need to answer the first and topmost question:
What we mean under the term performance or a little refined, how could we

interpret the performance?
The main problem is that there is no exact definition. The researchers are using

their own notations and definitions to describe their domain and interpretations.
Consequently, we need to establish our own viewpoints. The second problem is that
there is no uniform approach which could be used for measuring the performance.

Moreover, we could interpret the notion of performance at two different sides.
On the one hand, we could make considerations on the data processing side analy-
sing the quality of data handling processes. On the other hand, we could investigate
the business logic side analysing the correspondence to the business needs and
requirements. In both cases it is important to pay particular attention to the
relevant factors, like reliability, availability and rapid answer.

2.1. Measurement

After this short introduction, we need to establish the basis of our investigation
by answering the following questions:

• What to measure?

• How to measure?

The answer of our first question requires the establishment of viewpoints that
consider both quality factors and software properties. However, these two charac-
teristics take into the picture the notion of metrics. In order to use metrics we need
information about the topically significant parts. What is significant depends on
the data available and the measuring objectives. Naturally, most of us connect the
metric term with software quality at fist glance, but in our case we need to measure
the performance. Nevertheless, a good metric owns the following attributes. It is:

• exactly defined – known what is measured,



Performance evaluation of large-scale data processing systems 297

• objective – everybody can take the measurement,

• validated – measures what it should,

• robust – insensitive of changes of not relevant factors,

• easy to compute.

A software quality factor is a non-functional requirement for a software program
which is not called up by the customer’s contract, but nevertheless is a desirable
requirement which enhances the quality of the software program. When evaluating
a system’s performance we need to find similar quality factors but relevantly to the
performance. Moreover, these factors cannot be measured because of their vague
description. Some of them cannot be evaluated in its own right. However there
are related attributes which can be measured indeed. For us, it is necessary to
find measures, or metrics, which can be used to quantify them as non-functional
requirements. In our point of view the following relevant factors could be identified:

• availability – the time that the system is entirely available for its intended
purpose. The most important factor will be the number and the length of
downtime (either planned or unplanned).

• user satisfaction – a subjective number, describing user feedback based on
the functionality of the system.

• validation – interpreted in multidimensional:

– data side: beyond consistency, the data could correspond for the business
logic,

– system side: the system could be adapted through its parameterization
to full fit its requirements.

• system parameterization – how could be influenced the systems quality
through short-term and long-term parameterization.

• reliability.

The last factor, reliability could be also interpreted in a multidimensional man-
ner. At one side, it could represent confidentiality, meaning that my data is ac-
cessible only for me. At another side, it could mean integrity, or inter-operability
between layers of the software.

2.2. Reliability metrics
Reliability is a complex concept that should be considered at the system level

and should be specified as a non-functional requirement. Reliability metrics are
used to measure the frequency of failures and to predict the likelihood of a software
failure.

The following metrics have been used for specifying software reliability and
availability:



298 A. Adamkó, M. Arató, G. Fazekas, I. Juhász

• POFOD – Probability of failure on demand: The likelihood that the system
will fail when a service request is made.

• ROCOF – Rate of occurrence of failure: The frequency of occurrence with
which unexpected behavior is likely to occur.

• MTTF – Mean time to failure: The average time between observed system
failures.

• AVAIL – Availability: The probability that the system is available for use at
a given time.

To predict the system’s reliability there is no available abstract method. There-
fore, our investigation deals with the analysis of the measured data. Using a data-
oriented approach, we need data sources like log files, output files, etc. The nec-
essary data collected by an accounting process. This data could be interpreted a
definite way influenced by the requirements of the management. Generally speak-
ing, the company’s profile together with the management’s requirements determines
the desirable data or on the contrary we are focusing on the information that the
management would like to see. This could be done because there are no uniform
approaches available so we could take into account the business aspects influencing
the measurement.

3. Statistical testing

To validate that the system meets our requirement, we have to measure its
reliability at first. In recent literature, we could find a proper method used in the
validation process, called statistical testing.

The process of measuring the reliability of a system is illustrated in Figure 1.

Identify

operation

al profile

Select

tests

Select

models

Collect

data

Estimate

parameters

Perform

analysis

Figure 1: Statistical testing

This process involves six steps:

• identify operational profile – this profile reflects how it will be used in practice.
It consists of specification of classes of input and the probability of their
occurrence.



Performance evaluation of large-scale data processing systems 299

• select tests – we need to know the testing approach because it may influence
how the failure data are used.

• select models – a model’s applicability is determined by how well it accom-
modates a project’s special feature.

• collect data – we need to construct test data that reflects to the operational
profile using test data generators. We need a statistically significant amount
of failures, of course

• estimate parameters – in this step we could choose from the three common
methods like least squares, maximum likelihood and the method of moments.

• perform analysis.

The software execution environment includes the hardware platform, the oper-
ating system software, the system generation parameters, the workload, and the
operational profile. Software reliability testing is based on selecting input states
from an input space. An input state is a set of input variable values for a particu-
lar run. The input states chosen for test cases should form a random sample from
the input state in accordance with the distribution of input states that the oper-
ational profile specifies. Once the operational profile is established, a procedure
for selecting a random sample of input states is required, so that test cases can be
generated.

A software reliability growth model allows project management to track the
progress of the software’s reliability through statistical inference and to make pro-
jections of future milestones. In our point of view, reliability means something like
usability.

3.1. Model selection

There are several software reliability models available, like Musa Basic, Little-
wood/Verall, etc. A model’s applicability is determined by how well it accommo-
dates a project’s special feature. If the model is not fitting well, then we should
switch to an alternative model and/or parameter estimation technique. Some soft-
ware reliability modeling tools allow models to be combined, or to develop your
own model.

A common approach for measuring software reliability is the use of an analytic
model whose parameters are generally estimated from available data on software
failure. For example let we choose a simple model, like Musa Basic. To estimate
the reliability we need some parameters:

• Average total number of failures: µ(t)
Average refers to n independent instantiations of an identical software.

• Failure intensity: λ(t)
Number of failures per time unit, derivative of µ(t).



300 A. Adamkó, M. Arató, G. Fazekas, I. Juhász

• t may denote elapsed execution calendar or machine clock time

Musa’s Basic model assumption is that decrement in failure intensity function is
constant. Its consequence is that the failure intensity is function of average number
of failures experienced at any given point in time (= failure probability).

λ(µ) = λ0

[
1− µ

ν0

]

• λ(µ): failure intensity.

• λ0: initial failure intensity at start of execution.

• µ: average total number of failures at a given point in time.

• ν0: total number of failures over infinite time.

Figure 2: Basic Musa model

We can see that there exist several extension points in this model. Moreover, this
factor is only one of the above discussed factors. A deeper knowledge is needed
to select the proper model and to estimate the correct parameters. We can use
several data sources to help this parameter estimation but statistical methods are
needed to assist in the selection of the correct values.

After all the measurements are made, we can characterize the behaviour of
the system from this aspect and we can make some predictions. However, there
are other relevant aspects which have to be measured to qualify a given system.
Currently we have some imagination concerning these directions but further inves-
tigations are necessary.

4. Future work

In this preliminary experiment we observed that reliability is an important
factor in the performance of these models. The primary challenge is to identify the
relevant factors and an extensive analysis of operational profiles.

Further experiments are needed involving new cases and problems to support
this conjecture. Also it is an exciting challenge to implement improvements in
the software prediction process based on these ideas. These time-based processes
are related with each other and our goal is to make considerations about it using
differential equations and time-series. When we find proper models we could make
statistical computations to predict for example the alteration of response time if
overall system load goes from the normal 80% over 90%. In other cases we could
make predictions about system performance changes and similar effects.



Performance evaluation of large-scale data processing systems 301

References

[1] Musa, J. D., Iannino, A., Okumoto, K., Software Reliability: Measurement,
Prediction, Application, McGraw-Hill, (1987).

[2] Littlewood, B., Theories of Software Reliability: How Good Are They and How
can They be Improved?, IEEE Transaction Software Engineering, SE-6(5), (1980),
489–500.

[3] Kuo, S. Y., Hung, C. Y., Lyu, M. R., Framework for Modeling Software Reliabil-
ity, Using Various Testing-Efforts and Fault Detection Rates, IEEE Transaction on
Reliability, 50(3), (2001), 310–320.

[4] Wood, A., Predicting Software reliability, Computer, 29 (11), (1996), 69–77.

[5] Goel, A. L., Okumoto, K., Time-dependent error-detection rate model for software
and other performance measure, IEEE Transaction for Software Engineering, 11(12),
(1985), 285–306.

A. Adamkó, M. Arató, G. Fazekas, I. Juhász
Department of Information Technology
University of Debrecen
H-4010, P.O. Box 12, Debrecen
Hungary


