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Abstract

In the case of model-reference adaptive control (MRAC) the output of
an ideal reference model is approximated by the controlled plant using an
appropriate control rule. Our former results in MRAC of first order linear
systems have been extended to non-linear systems with static non-linearity.
In the latter case there is a problem of approximating non-linearity during the
adaptation process, therefore a radial basis function neural network (RBF)
has been applied as an approximator. An algorithm, published in the relevant
literature, has been investigated and implemented for simulation purposes.
The purpose of the simulations is to study the properties of the RBF-MRAC
neurocontroller in order to apply it for industrial applications. The reference
model is given by a first order linear differential equation and the plant is
given by a first order non-linear one. The computations and implementations
are based on the fourth-order Runge-Kutta method. In the paper the details
of implementations and the simulation results are presented. From the point
of view of possible industrial applications it is worth-while mentioning that
the IEEE-754-compatible floating point arithmetic has become a standard
component of the instruction set of recent programmable logic controllers
(PLCs). This fact - together with the ST-language standard - makes it pos-
sible to realize much more difficult algorithms in PLC programs, so such way
of the realisation of the neurocontroller is our recent task.
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1. Introduction

In the practice of industrial informatics programmable logic controllers (PLCs)
are often used to solve control problems. Because of the demand for leading-edge in-
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dustrial applications the IEEE-754-compliant floating-point arithmetic has become
a standard component of the recent PLC’s instruction set, which is obviously makes
it possible to implement novel algorithms on PLC. Recently a HHL-language, the
so called ST-language has been defined and standardized in order to increase the
speed and accuracy of the PLC-based software development. There is a PLC with
floating-point arithmetic and with ST-language support in our laboratory, so we
decided to implement a PLC-based neurocontroller in order to regulate a first-order
non-linear plant. The recent paper summarizes our results in the implementation
and simulation of the so-called RBF-MRAC system. The structure of the article
is the following. After the introduction in the second section the concept of model
reference adaptive control is introduced by a SISO-LTI (single input single output,
linear time invariant) system, followed by the detailed mathematical description of
the RBF-MRAC neurocontroller system in the third part. In the fourth section
the results of the simulations are presented with figures. The paper ends with
summary, acknowledgements and references.

2. The model reference adaptive control

Adaptive controllers are able to change their parameters according to speci-
fications even in varying operation conditions. During the past decades several
methods have been elaborated for the adaptive control task — one of these, the so
called model reference adaptive control (see [1, 2]), is the subject of this paper.
Our goal is to control a first order non-linear plant, it is reasonable to introduce
the concept of MRAC in the case of a first order linear system. Let the differential
equation below give the mathematical model of the plant:

dy(t) = —ay(t) + bu(t), (2.1)
dt
where y(t) and u(t) in (2.1) denote the output and input signals of the plant,
respectively, with fixed, but unknown parameters of a € R* and b € R. Let the
first order SISO-LTT reference model be described by

dym (t)
dt

= —amYm(t) + b (t), (2.2)

where yp,(t) in (2.2) denotes the output signal of the model, r(¢) denotes the
reference signal of the system, a,, € R™ and b,, € R are the prescribed model
parameters. Our goal is to give a control rule u(t) and by using this rule and the
reference signal we have to minimize the criterion function

E(t) = =€*(t), (2.3)

where

e(t) = y(t) — ym(?). (2.4)
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Figure 1: Block diagram of the first order MRAC system

By settling the control rule as

u(t) = D1 (t)r(t) — da(t)y(t), (2.5)

and by following Whittaker’s original arguments on applying the steepest descent
method [1], for the parameter change we get (given here only for the parameter
191):

dﬁ;t(t) _ _’y@git)’ (2.6)
where v € R is an adequately chosen constant. The task in this case is to determine
the partial derivative(s) in equation (2.6) — the details can be found at [3]. Figure 1

shows the structure of the first order MRAC system.

3. RBF-MRAC neurocontroller

Following the method presented in section 2 it is not an easy task to derive a
suitable control rule u(t) even in a first oder non-linear plant, where component
ay(t) is replaced by f[y(t)], a real-value, continuously differentiable static non-linear
function. Such systems are desrcibed by the equation below:

dy(t)
—— = —fly(O)] +u(t). (3.1)
dt
The linear model in this case is the same as in the prevoius section (see (2.2)). By
choosing the control rule u(t) as:

u(t) = —amy(t) + bmr(t) + hly(t), p(t)]; (3.2)
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where h(.) is a suitable function and p(t) is the parameter vector of the system,
then after substituting (3.2) into (3.1) we get:
dy(t)

7 = *amy(t) + bmr(t) + g(t)’ (33)

where

e(t) = hly(®), p(t)] — fly(t)]. (3.4)
That is, it is necessary to decrease the difference given in (3.4) in order to ap-
proximate the model output with the regulated output of the plant. For solving
this approximation problem [4] suggests the application of an online-trained RBF
network, because it can be considered as universal approximator [5]. The block
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Figure 2: Block diagram of the RBF-MRAC system

diagram of the neurocontroller can be seen in Figure 2. The parameter vector can
be related to number N of neurons and to the weight-vector w(t) of the RBF net-
work, and the function h(.) above is the output of the network. Because there is
no estimation given in [4] for the determination of the number of neurons, it is left
for numerical experiments. For the function A(.) and for the weight-vector update
the propositions are the following in [4]:

N1 T
(0 wio)] = 3 wi(teay { L 3.5)

and
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where w;(t) denotes the ith component of the weight vector, ¢; and o; denote the
fixed centers and widths of the radial basis functions (which are Gaussian-functions
in our case), N is the number of RBF-neurons and «, 3 € R*. The RBF-MRAC
system has been simulated using equations (2.2), (3.1), (3.2), (3.5), (3.6). As our
basic goal is an ST-language program written for a suitable PLC, the fourth-order
Runge-Kutta method has been used for solving the differential equations above.

4. Simulation results

Our simulation results in the case of non-linearity of [4] (a third-order polyno-
mial) and in the case of exponetial-type non-linearity can be found in this section.
The linear model was the same in both cases.

4.1. Simulation in the case of a third-order polynomial

According to [4], the parameters of the linear model have been chosen as b,, = 2,
am = 2, and the non-linear function was the third-order polynomial f(z) = 2z +
0.8z3. The simulation parameters are summarized in Table 1. The initial value of

r(t) N « Jé; centers widths
sin(2m fot), fo=1110[0.999 [ 0.001 | ¢; = —1+i5~ | 0.3

Table 1: Simulation parameters in the case of a third-order non-linear function

the weight-vector has been chosen according to equation w;(0) = ¢; +rnd(1) — 0.5,

plant_unreg

where rnd(1) denotes a pseudo-random number in [0,1].  Figure 3 shows the
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Figure 3: Regulated plant output in the case of a third-order non-linear function

regulated plant output, the output of the model and the output of the unregulated



252 1. Pintér, 1. Lajtai

fix)

) 0
RBF‘:N,W,C,G,:‘]

[ 2"EJ -5 L
-l 1] |

~ 1 % g

Figure 4: Approximation of the non-linear function by RBF-network after 100 iteration
steps

plant in the case of r(¢t) = w(t), while in Figure 4 the approximation of the non-
linear function can be seen after 100 iterations with 0.06 step-size.

4.2. Simulation in the case of exponential-type non-linearity

In this case the parameters of the linear model have also been chosen as b,, =
2, am = 2, and the general form of the non-linear function was f(a,b,c,z) =
aexp(br) + ¢, with a = 6.13 x 103, b = —9.787 x 1074, ¢ = 2.097 x 103. These
parameters have been obtained by measurement in the realised prototype-system
(see Figure 5). The current-resistor characteristic of the lamp-photoresistor system

Figure 5: The realised prototype system with exponential-type non-linearity

has been measured using the PLC’s analogue I/O modules and the mathematical
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form of the non-linear function has been determined by curve-fitting. The sim-
ulation parameters in this case can be seen in Table 2. The initial value of the

r(t) N ! Ié] centers widths
sin(2m fot), fo=1 125 ] 0.999 [ 0.001 | ¢; =25004— | ZEX

Table 2: Simulation parameters in the case of exponential-type non-linear function

weight-vector has been chosen according to equation w;(0) = 5000 — ¢;. Figure 6
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Figure 6: Regulated plant output and output error in the case of exponential-type non-
linearity

shows the regulated plant output, the output of the model and the output of the
unregulated plant in the case of 7(t) = u(t). The difference signal of (2.4) can also
be seen (lower trace).

5. Summary

The basic aim of our work is to realise a RBF-MRAC neurocontroller in a PLC.
In this paper our simulation results have been demonstrated. Using the fourth-
order Runge-Kutta method the linear and non-linear differential equations have
been solved. The output error with acceptable convergence speed has been achieved
both in the case of third-order non-linearity and in the case of exponential-type
one. The parameters of the RBF-network have been determined experimentally.
Our ongoing task is the realisation of the algorithm described in this paper using
PLC’s ST-language.
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