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Abstract
The aim of this paper is to approximate the solution of a stochastic dif-

ferential equation driven by multifractional Brownian motion using a series
expansion for the noise. We prove that the solution of the approximating
equations converge in probability to the solution of the given equation.

Keywords: :Stochastic differential equations, approximation, multifractional
Brownian motion.

1. Introduction

Let t0 ∈ (0, T ] fixed. We consider the stochastic differential equation of the
form driven by multifractional Brownian motion

dX(t) = F (X(t), t)dt+G(X(t), t)dB(t), (1.1)
X(t0) = X0,

where the random functions F and G satisfy with probability 1 the following con-
ditions: F ∈ C(Rn × [0, T ],Rn), G ∈ C1(Rn × [0, T ],Rn) and for each t ∈ [0, T ] the

functions F (·, t), ∂G(·, t)
∂x

,
∂G(·, t)
∂t

are locally Lipschitz. In [4] we gave an approx-
imation for the fractional Brownian motion case. In real datasets the roughness
of the sample path varies with location. Levy Vehel (1995) considered the case
where the Hurst index varies with the time and named multifractional Brownian
motion. In this paper we will approximate the solution in multifractional case using
as Hurst index the linear and logistic functions:

H(t) = t and H(t) = 0.3 +
0.3

1 + exp(−100(t− 0.7))
.

The multifractional Brownian motion B =
(
B(t)

)
t∈[0,1]

with Hurst index H(t) ∈
(0, 1) we approximate using a trigonometrical series expansion.
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Let Jν be the Bessel function of first type of order ν and let x1 < x2 < · · ·
be the positive, real zeros of J−H , while y1 < y2 < · · · are the positive, real zeros
of J1−H . We consider (Xn)n∈N and (Yn)n∈N to be two independent sequences of
centered Gaussian random variables such that for each n ∈ N we have

VarXn =
2c2H(t)

x
2H(t)
n J2

1−H(t)(xn)
, VarYn =

2c2H(t)

y
2H(t)
n J2

−H(t)(yn)
,

where
c2H(t) =

sin(πH(t))

π
Γ(1 + 2H(t)).

In [2] it is proved that a fractional Brownian motion B =
(
B(t)

)
t∈[0,1]

with

Hurst index H ∈ (0, 1) can be written as

B(t) =

∞∑

n=1

sin(xnt)

xn
Xn +

∞∑

n=1

1− cos(ynt)

yn
Yn, t ∈ [0, 1].

Similarly on can shown that the multifractional Brownian motion
B =

(
B(t)

)
t∈[0,1]

with Hurst index H(t) ∈ (0, 1) can be written as

B(t) =

∞∑

n=1

sin(xnt)

xn
Xn +

∞∑

n=1

1− cos(ynt)

yn
Yn, t ∈ [0, 1].

The equation (1.1) we approximate for each N ∈ N through

dXN (t) = α(XN (t), t)dt+ β(XN (t), t)dBN (t), (1.2)
XN (t0) = X0,

where

BN (t) =

N∑

n=1

sin(xnt)

xn
Xn +

N∑

n=1

1− cos(ynt)

yn
Yn, t ∈ [0, 1], N ∈ N.

We will show that the equation (1.2) has a local solution which converges in
probability to the solution of (1.1) in the interval, where the solutions exist.

2. Series expansion for multifractionalBrownian mo-
tion B

A Gaussian random process B =
(
B(t)

)
t>0

is called multifractional Brownian

motion with Hurst index H(t) ∈ (0, 1), if it has zero mean, continuous sample paths
and covariance function

E
(
B(s1)B(s2)

)
=

1

2

(
s1

2H(t) + s2
2H(t) − |s1 − s2|2H(t)

)
.
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The multifractional Brownian motion B has on any finite interval [0, T ] Hölder
continuous paths with exponent γ ∈ (0, H(t)) (see [1]), i.e.

P


ω ∈ Ω : sup

0<s2−s1<h(ω)

s1,s2∈[0,T ]

|B(s2)−B(s1)|
|s2 − s1|γ

6 δ


 = 1,

where h is an a.s. positive random variable and δ > 0 is an appropriate constant.
Moreover, the quadratic variation on [a, b] ⊆ [0, T ] is

lim
|∆n|→0

n∑

i=1

(
B(tni )− B(tni−1)

)2
=




∞ if H(t) < 1

2 ,
b− a if H(t) = 1

2 ,
0 if H(t) > 1

2 ,
(2.1)

where ∆n = (a = tn0 < · · · < tnn = b) is a partition of [a, b] with |∆n| = max
16i6n

(tni −
tni−1).

If H(t) 6= 1
2 , then the convergence in (2.1) holds with probability 1 uniformly

in the set of all partitions of [a, b], while for H(t) = 1
2 the convergence in (2.1)

holds in mean square uniformly in the set of all partitions of [a, b]. Note that, if
H(t) 6= 1

2 , then B is not a semimartingale, so the classical stochastic integration
does not work. But the Hölder continuity of B will ensure the existence of integrals

T∫

0

G(u)dB(u),

defined in terms of fractional integration (see Section 4) as investigated in [9] and
[10].

For ν 6= −1,−2, . . . the Bessel function Jν of the first type of order ν is defined
on the region {z ∈ C : | arg z| < π} as the absolutely convergent sum

Jν(z) =
∞∑

k=0

(−1)k
Γ(k + 1)Γ(ν + k + 1)

(z
2

)ν+2k

.

It is known that for ν > −1 the function Jν has a countable number of real, positive
simple zeros (see [8], Chapter 15). Let x1 < x2 < · · · be the positive, real zeros of
J−H and let y1 < y2 < · · · be the positive, real zeros of J1−H .
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Figure 1: Bessel functions: J−H (with ’·’), J1−H (with ’-’ ), where H = 0.65

Let (Xn)n∈N and (Yn)n∈N be two independent sequences of independent Gaus-
sian random variables such that for each n ∈ N we have

E(Xn) = E(Yn) = 0

and

VarXn =
2c2H(t)

x
2H(t)
n J2

1−H(t)(xn)
, VarYn =

2c2H

y
2H(t)
n J2

−H(t)(yn)
,

where

c2H =
sin(πH(t))

π
Γ(1 + 2H).

In [2] it is proved that the random process B =
(
B(t)

)
t∈[0,1]

given by

B(t) =

∞∑

n=1

sin(xnt)

xn
Xn +

∞∑

n=1

1− cos(ynt)

yn
Yn, t ∈ [0, 1]

is well defined and both series converge absolutely and uniformly in t ∈ [0, 1]. The
process B is a fractional Brownian motion with Hurst index H . Similarly if we use
the Hurst index H(t) we obtain an approximation for multifractional Brownian
motion.
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a) linear b) logistic

Figure 2: Approximation BN of multifractional Brownian motion

For each N ∈ N we define the process

BN (t) =

N∑

n=1

sin(xnt)

xn
Xn +

N∑

n=1

1− cos(ynt)

yn
Yn, t ∈ [0, 1], (2.2)

then using the above mentioned result from [2] we have

P ( lim
N→∞

sup
t∈[0,1]

|B(t)−BN (t)| = 0) = 1. (2.3)

In the sequel we need the following result:

Theorem 2.1. For all N ∈ N the approximating processes (BN (t))t∈[0,1] are with
probability 1 Lipschitz continuous.

Proof. Let N ∈ N be fixed. We write

|BN (t)−BN (s)| 6
N∑

n=1

∣∣∣∣
sin(xnt)− sin(xns)

xn
Xn

∣∣∣∣+
N∑

n=1

∣∣∣∣
cos(xns)− cos(xnt)

xn
Yn

∣∣∣∣

But the functions sin and cos are Lipschitz continuous, therefore

|BN (t)−BN (s)| 6 |t− s|
N∑

n=1

(
|Xn|+ |Yn|

)
= CN |t− s|, for all s, t ∈ [0, 1],

where CN =

N∑

n=1

(
|Xn|+ |Yn|

)
<∞ is a random variable. �

3. Fractional integrals and derivatives

Let a, b ∈ R, a < b and f, g : R → R. We use notions and results about
fractional calculus, from [7]:

f(a+) := lim
δց0

f(a+ δ), f(b−) := lim
δց0

f(b− δ),



234 H. Lisei, A. Soós

fa+(x) = I(a,b)(f(x)− f(a+)), gb−(x) = I(a,b)(g(x)− g(b−)).
Note that for α > 0 we have (−1)α = eiπα.

For f ∈ L1 and α > 0 the left-sided fractional Riemann-Liouville integral of f
of order α on (a, b) is given for a.e. x by

Iαa+f(x) =
1

Γ(α)

x∫

a

(x− y)α−1f(y)dy

and the right-sided fractional Rieman-Liouville integral of f of order α on (a, b) is
given for a.e. x by

Iαb−f(x) =
(−1)−α

Γ(α)

b∫

x

(y − x)α−1f(y)dy.

Fractional differentiation may be introduced as an inverse operation to frac-
tional integration. For our purposes it is sufficient to work with a class of functions
where this inversion is well-determined and the Riemann-Liouville derivatives agree
with the fractional derivatives in the sense of Weyl and Marchaud.

For p > 1 let Iαa+(Lp(a, b)) be the class of functions f which have the represen-
tation f = Iαa+Φ, where Φ ∈ Lp(a, b). If 0 < α < 1, then the function Φ in this
representation agrees a.e. with the left-sided Riemann-Liouville derivative of f of
order α

Dα
a+f(x) := I(a,b)(x)

1

Γ(1 − α)
d

dx

x∫

a

f(y)

(x− y)α dy,

where the corresponding Weyl representation is

Dα
a+f(x) :=

1

Γ(1− α)


 f(x)

(x− a)α + α

x∫

a

f(x)− f(y)
(x− y)α+1

dy


 I(a,b)(x).

It is known that f ∈ Iαa+(Lp(a, b)) if and only if f ∈ Lp(a, b) and the integral

Iε(x) =
x−ε∫

a

f(x)− f(y)
(x− y)α+1

dy for x ∈ (a, b)

converges in Lp(a, b) as εց 0.

For p > 1 let Iαb−(Lp(a, b)) be the class of functions f which have the represen-
tation g = Iαb−Φ, where Φ ∈ Lp(a, b). If 0 < α < 1, then the function Φ in this
representation agrees a.e. with the right-sided Riemann-Liouville derivative of g of
order α (given in the Weyl representation)

Dα
b−g(x) := I(a,b)(x)

(−1)1+α

Γ(1− α)
d

dx

b∫

x

g(y)

(y − x)α dy,
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where the corresponding Weyl representation is

Dα
b−g(x) :=

(−1)α
Γ(1− α)


 g(x)

(b− x)α + α

b∫

x

g(x)− g(y)
(y − x)α+1

dy


 I(a,b)(x).

It is known that g ∈ Iαb−(Lp(a, b)) if and only if g ∈ Lp(a, b) and the integral

Jε(x) =
b∫

x+ε

f(x)− f(y)
(y − x)α+1

dy for x ∈ (a, b)

converges in Lp(a, b) as ε ց 0. Recall that by construction we have for f ∈
Iαa+(Lp(a, b)) and g ∈ Iαb−(Lp(a, b))

Iαa+(D
α
a+f) = f, Iαb−(D

α
b−g) = g (3.1)

and
Dα

a+(I
α
a+f) = f, Dα

b−(I
α
b−g) = g. (3.2)

In [9] is defined the fractional integral of a function f with respect to g as follows

b∫

a

f(x)dg(x) = (−1)α
b∫

a

Dα
a+fa+(x)D

1−α
b− gb−(x)dx (3.3)

+f(a+)(g(b−)− g(a+))

if fa+ ∈ Iαa+(Lp(a, b)), gb− ∈ I1−α
b− (Lq(a, b)) for some 1

p + 1
q 6 1 and 0 6 α 6 1.

In our investigations we will take p = q = 2. If 0 6 α < 1
2 , then the integral in

(3.3) can be written as

b∫

a

f(x)dg(x) = (−1)α
b∫

a

Dα
a+f(x)D

1−α
b− gb−(x)dx (3.4)

if f ∈ Iαa+(L2(a, b)), f(a+) exists, gb− ∈ I1−α
b− (L2(a, b)).

4. The stochastic integral

Without loss of generality we consider 0 < T 6 1, because for arbitrary T > 0
we can rescale the time variable using the H(t)-self similar property of the mul-
tifractional Brownian motion meaning that

(
B(ct)

)
t>0

and
(
cH(t)B(t)

)
t>0

are

equal in distribution for every c > 0.
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We will define the
T∫

0

G(u)dB(u) Ito integral instead of
t∫

0

G(u)dB(u) and use

t∫

0

G(u)dB(u) =

T∫

0

I[0,t](u)G(u)dB(u) for t ∈ [0, T ]

(by Theorem 2.5 in [9]).
We consider α > 1−H . It follows by (3.4) that

T∫

0

G(u)dB(u) = (−1)α
T∫

0

Dα
0+G(u)D

1−α
T− BT−(u)du (4.1)

for G ∈ Iα0+(L2(0, T )), where G(0+) exists and BT− ∈ I1−α
T− (L2(0, T )).

The condition G ∈ Iα0+(L2(0, T )) (with probability 1) means that G ∈ L2(0, T )
and

Iε(x) =
x−ε∫

0

G(x) −G(y)
(x− y)α+1

dy for x ∈ (0, T )

converges in L2(0, T ) as εց 0, i.e. there exists in L2(0, T ) the indefinite integral

I(x) =
x∫

0

G(x) −G(y)
(x− y)α+1

dy for x ∈ (0, T )

such that

lim
εց0

T∫

0

(
Iε(x)− I(x)

)2
dx = 0.

The condition BT− ∈ I1−α
T− (L2(0, T )) means BT− ∈ L2(0, T ) and

Jε(x) =
T∫

x+ε

B(x) −B(y)

(y − x)2−α
dy for x ∈ (0, T )

converges in L2(0, T ) as εց 0, i.e. there exists in L2(0, T ) the integral

J (x) =
T∫

x

B(x)−B(y)

(y − x)2−α
dy for x ∈ (0, T )

such that

lim
εց0

T∫

0

(
Jε(x) − J (x)

)2
dx = 0.
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This condition for B is fulfilled for α > 1−H , since the fractional Brownian motion
B is a.s. Hölder continuous with exponent γ ∈ (0, H) (see [1]), i.e.

P


ω ∈ Ω : sup

0<t−u<h(ω)

t,u∈[0,T ]

|B(t)−B(u)|
|t− u|γ 6 δ


 = 1,

where h is an a.s. positive random variable and δ > 0 is an appropriate constant.
We will use (3.4) for the integrals with respect the approximating processes(

BN (t)
)
t∈[0,T ]

. Observe that BN,T− ∈ I1−α
T− (L2(0, T )), which follows from the

Lipschitz continuity property in Theorem 2.1. We have
T∫

0

G(u)dBN (u) = (−1)α
T∫

0

Dα
0+G(u)D

1−α
T− BN,T−(u)du (4.2)

for G ∈ Iα0+(L2(0, T )), where G(0+) exists.

Let
(
Z(t)

)
t∈[0,T ]

be a cádlág process. Its generalized quadratic variation process
(
[Z](t)

)
t∈[0,T ]

is defined as

[Z](t) = lim
εց0

ε

1∫

0

t∫

0

1

u
(Zt−(s+ u)− Zt−(s))

2dsdu

+(Z(t)− Z(t−))2,
if the limit exists uniformly in probability (see [6], also in [10] Section 5).

In particular, if B is a fractional Brownian motion with Hurst index H ∈ (12 , 1)
and BN (N ∈ N) is an approximation of B as given in (2.2), it is easy to verify
that

[B](t) = 0 and [BN ](t) = 0 for each t ∈ [0, T ], (4.3)
because B is locally Hölder continuous and BN is Lipschitz continuous. The Ito
formula for change of variable in fractal-type integrals is given in the next theorem.

Theorem 4.1 ([10], Theorem 5.8). Let
(
Z(t)

)
t∈[0,T ]

be a continuous process with

generalized quadratic variation [Z]. Let Q : R × [0, T ] → R be a random function
such that with probability 1 we have Q ∈ C1(R × [0, T ]) and ∂2Q

∂x2 ∈ C(R × [0, T ]).
Then, for t0, t ∈ [0, T ] we have

Q(Z(t), t)−Q(Z(t0), t0) =

t∫

t0

∂Q

∂x
(Z(s), s)dZ(s) +

t∫

t0

∂Q

∂t
(Z(s), s)ds

+

t∫

t0

∂2Q

∂2x
(Z(s), s)d[Z]s.
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Let 1 −H(t) < α < 1
2 and let G ∈ Iα0+(L2(0, T )) such that G(0+) exists. We

define the processes

Z(t) =

t∫

0

G(s)dB(s) and ZN (t) =

t∫

0

G(s)dBN (s), t ∈ (0, T ].

Then by Theorem 5.6, p. 167 in [10] it follows that

[Z](t) = 0 and [ZN ](t) = 0.

Using Theorem 4.1, it follows that, if Q : R× [0, T ]→ R is a random function such
that with probability 1 we have Q ∈ C1(R × [0, T ]) and ∂2Q

∂x2 ∈ C(R × [0, T ]), then
for t0, t ∈ [0, T ] we have

Q(Z(t), t)−Q(Z(t0), t0) =

t∫

t0

∂Q

∂x
(Z(s), s)G(s)dB(s) (4.4)

+

t∫

t0

∂Q

∂t
(Z(s), s)ds

and

Q(ZN (t), t)−Q(ZN(t0), t0) =

t∫

t0

∂Q

∂x
(ZN (s), s)G(s)dBN (s) (4.5)

+

t∫

t0

∂Q

∂t
(ZN (s), s)ds.

5. Some results

We prove the existence of the local solution of a deterministic equation with
locally Lipschitz function (in the version we need in our paper). We adapt the ideas
from the proof of Theorem 1.4 in [5]. We give the proof here in order to make the
proof of Theorem 5.2 more understandable.

In what follows ‖ · ‖ denotes the norm in Rn.

Theorem 5.1. Let A : Rn×[0,∞)→ Rn be such that for each u ∈ Rn the function
A(u, ·) is continuous and for any c, T > 0 we have

‖A(x, t)−A(y, t)‖ 6 L(c, T )‖x− y‖
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for all x, y ∈ Rn with ‖x‖ 6 c, ‖y‖ 6 c and t ∈ [0, T ], where L(c, T ) > 0 is the
locally Lipschitz constant. We consider the equation

U(t) = U0 +

t∫

t0

A(U(s), s)ds, (5.1)

where U0 ∈ Rn and t0 > 0 fixed. Then equation (5.1) has a local solution, i.e.
there exists a maximal interval (t1, t2) ∈ [0,∞) containing t0 and a function U :
Rn × (t1, t2)→ Rn such that (5.1) is satisfied for each t ∈ (t1, t2).

Proof. For any τ > 0 let M(τ) = max
t∈[0,τ+1]

‖A(0, t)‖. We consider

δ = min

{
1,

‖U0‖
2‖U0‖L(2‖U0‖, t0 + 1) +M(t0)

, t0

}
.

We define the mapping A : C([t0 − δ, t0 + δ],Rn)→ C([t0 − δ, t0 + δ],Rn)

(AU)(t) := U0 +

t∫

t0

A(U(s), s)ds, t ∈ [t0 − δ, t0 + δ].

We prove that A maps the ball B(0, R) of radius R = 2‖U0‖ centered at 0 of the
space C([t0−δ, t0+δ],Rn) into itself. For U ∈ B(0, R) and for each t ∈ [t0−δ, t0+δ]
we have the following estimates

‖A(U)(t)‖ 6 ‖U0‖+

∣∣∣∣∣∣

t∫

t0

‖A(U(s), s)−A(0, s)‖+ ‖A(0, s)‖
)
ds

∣∣∣∣∣∣
6 ‖U0‖+ (L(R, t0 + 1)R+M(t0))|t− t0| 6 2‖U0‖ = R.

Therefore, AU ∈ B(0, R). It is easy to verify that for each U, V ∈ B(0, R) and each
t ∈ [t0 − δ, t0 + δ] we have

‖A(U)(t)−A(V )(t)‖ 6 L(R, t0 + 1)|t− t0| sup
t∈[t0−δ,t0+δ]

‖U(t)− V (t)‖.

For each N ∈ N we denote
AN = A ◦ · · · ◦ A︸ ︷︷ ︸

N times
.

From the definition of A it then follows for each N ∈ N and each t ∈ [t0− δ, t0 + δ]
that

‖AN (U)(t)−AN (V )(t)‖ 6

(
L(R, t0 + 1)|t− t0|

)N

N !
sup

t∈[t0−δ,t0+δ]

‖U(t)− V (t)‖.
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Hence

sup
t∈[t0−δ,t0+δ]

‖AN (U)(t)−AN (V )(t)‖ 6

(
L(R, t0 + 1)δ

)N

N !
sup

t∈[t0−δ,t0+δ]

‖U(t)−V (t)‖.

For N large enough we have

(
L(R, t0 + 1)δ

)N

N !
< 1. By a well known extension of

the contraction principle it follows that A has a unique fixed point in B(0, R).
We have proved that there exists a solution U defined on the interval [t0−δ, t0+δ]

satisfying (5.1). This solution can be extended to the interval [t0 − δ∗, t0 + δ∗]
(δ∗ > δ), where on [t0 − δ, t0 + δ] we have the above solution U and for t > t0 + δ
we use the above method to find a local solution for

U(t) = U(t0 + δ) +

t∫

t0+δ

A(U(s), s)ds,

and also for t 6 t0 − δ we use the above method to find a local solution for

U(t) = U(t0 − δ) +
t∫

t0−δ

A(U(s), s)ds.

Moreover, δ∗ depends only on δ, ‖U(t0 + δ)‖, ‖U(t0 − δ)‖,M(t0 + δ),M(t0 − δ).
Hence, there exists a maximal interval (t1, t2) containing t0 for the existence of the
local solution U . �

Theorem 5.2. Let A : Rn+1× [0, T ]→ Rn be such that for each (x, u) ∈ Rn+1 the
function A(x, u, ·) is continuous and we have

‖A(x, u, t)−A(y, v, t)‖ 6 L(c)(‖x− y‖+ |u− v|)

for all x, y ∈ Rn with ‖x‖ 6 c, ‖y‖ 6 c, |u| 6 c, |v| 6 c and each t ∈ [0, T ],
where L(c) > 0 is the locally Lipschitz constant. Let U0 ∈ Rn and t0 ∈ (0, T ]
fixed. Assume that (vN )N∈N is a sequence from C[0, T ] which converges uniformly
to v ∈ C[0, T ], i.e.

lim
N→∞

sup
t∈[0,T ]

|vN (t)− v(t)| = 0.

We consider the equations

UN (t) = U0 +

t∫

t0

A(UN (s), vN (s), s)ds, N ∈ N (5.2)

and

U(t) = U0 +

t∫

t0

A(U(s), v(s), s)ds. (5.3)
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The equations (5.2) and (5.3) have local solutions, i.e. there exists a maximal
interval (t1, t2) ⊂ [0, T ] (which does not depend on N) containing t0 and func-
tions UN , U : Rn × (t1, t2) → Rn such that (5.2) and (5.3) are satisfied for each
t ∈ (t1, t2). Moreover,

lim
N→∞

sup
t∈(t1,t2)

‖UN (t)− U(t)‖ = 0.

Proof. For any τ > 0 let M = max
t∈[0,T ]

‖A(0, 0, t)‖. Since (vN )N∈N converges uni-

formly to v in C[0, T ], it follows that there exists m > 0 such that

sup
t∈[0,T ]

|vN (t)|+ sup
t∈[0,T ]

|v(t)| 6 m for each N ∈ N.

We consider

δ = min

{
1,

m

(‖U0‖+ 2m)L(‖U0‖+m) +M
, t0, T − t0

}
.

We define the mapping FN : C([t0 − δ, t0 + δ],Rn)→ C([t0 − δ, t0 + δ],Rn)

(FNY )(t) := U0 +

t∫

t0

A(Y (s), vN (s), s)ds, t ∈ [t0 − δ, t0 + δ].

We prove that FN maps the ball B(0, R) of radius R = ‖U0‖ + m centered at
0 of the space C([t0 − δ, t0 + δ],Rn) into itself. For Y ∈ B(0, R) and for each
t ∈ [t0 − δ, t0 + δ] we have the following estimates

‖FN(Y )(t)‖ 6 ‖U0‖+

∣∣∣∣∣∣

t∫

t0

‖A(Y (s), vN (s), s)−A(0, 0, s)‖+ ‖A(0, 0, s)‖
)
ds

∣∣∣∣∣∣
6 ‖U0‖+ (L(R)(R +m) +M)|t− t0| 6 ‖U0‖+m = R.

Therefore, FNY ∈ B(0, R). It is easy to verify that for each Y, Z ∈ B(0, R) and
each t ∈ [t0 − δ, t0 + δ] we have

‖FN (Y )(t)−FN(Z)(t)‖ 6 L(R)|t− t0| sup
t∈[t0−δ,t0+δ]

‖Y (t)− Z(t)‖.

Using the contraction principle exactly as in the proof of Theorem 5.1, it follows
that FN has a unique fixed point in B(0, R), which is defined on [t0 − δ, t0 + δ].
This fixed point is the local solution UN of (5.2). We observe that this interval
of existence of the local solution UN does not depend on N , and UN ∈ B(0, R)
for each N ∈ N. Exactly in the same way we can prove that on the same interval
[t0−δ, t0+δ] there exists a solution U ∈ B(0, R) satisfying (5.3). Let (t1, t2) ⊂ (0, T ]
be the maximal interval (which does not depend on N) containing t0 such that (5.2)
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and (5.3) are satisfied for each t ∈ (t1, t2) and there exists R > 0 (independent of
N) such that UN , U ∈ B(0, R). Then for large N we have

‖UN(t)− U(t)‖ 6

∣∣∣∣∣∣

t∫

t0

‖A(UN(s), vN (s), s)−A(U(s), v(s), s)‖ds

∣∣∣∣∣∣

6

∣∣∣∣∣∣

t∫

t0

L(R)(‖UN(s)− U(s)‖+ ‖vN (s)− v(s)‖)ds

∣∣∣∣∣∣
.

By the Gronwall lemma we get

sup
t∈(t1,t2)

‖UN(t)− U(t)‖ 6 sup
t∈(t1,t2)

‖vN (t)− v(t)‖eL(R)(t2−t1)

Therefore,
lim

N→∞
sup

t∈(t1,t2)

‖UN(t)− U(t)‖ = 0.

�

6. Stochastic differential equations driven by multi-
fractional Brownian motion

Let
(
B(t)

)
t>0

be a multifractional Brownian motion with Hurst parameter

H(t) such that H > 1
2 . We investigate stochastic differential equations of the form

dX(t) = F (X(t), t)dt+G(X(t), t)dB(t), (6.1)
X(t0) = X0,

where X0 is a random vector in Rn and the random functions F and G satisfy with
probability 1 the following conditions:

(C1) F ∈ C(Rn × [0, T ],Rn), G ∈ C1(Rn × [0, T ],Rn);

(C2) for each t ∈ [0, T ] the functions F (·, t), ∂G(·, t)
∂xi

,
∂G(·, t)
∂t

are locally Lipschitz
for each i ∈ {1, . . . , n}.

We consider the pathwise auxiliary partial differential equation on Rn×R×[0, T ]
∂K

∂z
(y, z, t) = G(K(y, z, t), t), (6.2)

K(Y0, Z0, t0) = X0,

where Y0 is an arbitrary random vector in Rn and Z0 an arbitrary random variable
in R. From the theory of differential equations it follows that with probability
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1 there exists a local solution K ∈ C1(Rn × [0, T ],Rn) in a neighbourhood V of
(Y0, Z0, t0) with partial derivatives being Lipschitz in the variable y and

det

(
Ki

∂yj
(y, z, t)

)

16i,j6n

6= 0.

We have for (x, y, t) ∈ V

∂2K

∂z2
(y, z, t) =

n∑

j=1

∂G

∂xj
(K(y, z, t), t)Gj(K(y, z, t), t).

We also consider the pathwise differential equation (in matrix representation)
on [0, T ]

dY (t) =

(
K

∂y
(Y (t), B(t), t)

)−1 [
F (K(Y (t), B(t), t), t)

−∂K
∂t

(Y (t), B(t), t)
]
dt

Y (t0) = Y0,

which has a unique local solution on a maximal interval (t10, t
2
0) ⊆ [0, T ] with

t0 ∈ (t10, t
2
0) (see Theorem 5.1).

Applying the Ito formula, see Theorem 4.1 and relation (4.4), to the random
function Q(z, t) = K(Y (t), z, t) (successively for K1, . . . ,Kn) and the fractional
Brownian motion B we obtain

K(Y (t), B(t), t) −K(Y (t0), B(t0), t0)

=

n∑

j=1

t∫

t0

∂K

∂yj
(Y (s), B(s), s)dY j(s) +

t∫

t0

∂K

∂z
(Y (s), B(s), s)dB(s)

+

t∫

t0

∂K

∂t
(Y (s), B(s), s)ds

=

n∑

j=1

t∫

t0

∂K

∂yj
(Y (s), B(s), s)dY j(s) +

t∫

t0

G(K(Y (s), B(s), s), s)dB(s)

+

t∫

t0

∂K

∂t
(Y (s), B(s), s)ds

=

t∫

t0

F (K(Y (s), B(s), s), s)ds+

t∫

t0

G(K(Y (s), B(s), s), s)dB(s).

Therefore,
X(t) := K(Y (t), B(t), t)
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satisfies

X(t) = X0 +

t∫

t0

F (X(s), s)ds+

t∫

t0

G(X(s), s)dB(s).

Instead of the process
(
B(t)

)
t∈[0,1]

we consider its approximations
(
BN (t)

)
t∈[0,1]

,

N ∈ N given in (2.2). For eachN ∈ N we consider the pathwise differential equation
(in matrix representation)

dYN (t) =

(
∂K

∂y
(YN (t), BN (t), t)

)−1 [
F (K(YN (t), BN (t), t), t)

−∂K
∂t

(YN (t), BN (t), t)
]
dt

YN (t0) = Y0,

which has a unique local solution YN on a maximal interval (t1, t2) ⊂ (t01, t
0
2) of

existence which contains t0 (see Theorem 5.2). Applying the Ito formula, see The-
orem 4.1 and (4.5), to the random function Q(z, t) = K(YN (t), z, t) (successively
for K1, . . . ,Kn) we obtain

K(YN (t), BN (t), t)−K(YN (t0), BN (t0), t0)

=

n∑

j=1

t∫

t0

∂K

∂yj
(YN (s), BN (s), s)dY j

N (s) +

t∫

t0

∂K

∂z
(YN (s), BN (s), s)dBN (s)

+

t∫

t0

∂K

∂t
(YN (s), BN (s), s)ds

=

n∑

j=1

t∫

t0

∂K

∂yj
(YN (s), BN (s), s)dY j

N (s) +

t∫

t0

G(K(YN (s), BN (s), s), s)dBN (s)

+

t∫

t0

∂K

∂t
(YN (s), BN (s), s)ds

=

t∫

t0

F (K(Y (s), B(s), s), s)ds +

t∫

t0

G(K(YN (s), BN (s), s), s)dBN (s).

Therefore,
XN (t) := K(YN (t), BN (t), t)

satisfies

XN(t) = X0 +

t∫

t0

F (XN (s), s)ds+

t∫

t0

G(XN (s), s)dBN (s), t ∈ (t1, t2).
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By Theorem 5.2 it follows that we have the following pathwise property

lim
N→∞

sup
t∈(t1,t2)

‖YN (t)− Y (t)‖ = 0.

Then by the continuity properties of K and by (2.2) it follows that for a.e. ω ∈ Ω
we have

lim
N→∞

sup
t∈(t1,t2)

‖XN(t)−X(t)‖ = 0.

By this we have proved the main result of our paper:

Theorem 6.1. Let B be a multifractional Brownian motion approximated through
the processes BN given in (2.2) and (2.3). Let F,G : Rn × [0, T ]→ Rn be random
functions satisfying with probability 1 the conditions (C1) and (C2). Let t0 ∈ (0, T ]
be fixed. Then, each of the stochastic equations

X(t) = X0 +

t∫

t0

F (X(s), s)ds+

t∫

t0

G(X(s), s)dB(s),

XN(t) = X0 +

t∫

t0

F (XN (s), s)ds+

t∫

t0

G(XN (s), s)dBN (s), N ∈ N

admit almost surely a unique local solution on a common interval (t1, t2) (which is
independent of N). Moreover, we have the following approximation result

P ( lim
N→∞

sup
t∈(t1,t2)

‖XN(t)−X(t)‖ = 0) = 1.
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