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Abstract
Kernel type density estimators are studied for random fields. It is proved

that the estimators are asymptotically normal if the set of locations of obser-
vations become more and more dense in an increasing sequence of domains.
It turns out that in our setting the covariance structure of the limiting nor-
mal distribution can be a combination of those of the continuous parameter
and the discrete parameter cases. The proof is based on a central limit theo-
rem for α-mixing random fields. Simulation results support our theorems. A
functional version of the limit theorem is also presented.
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1. Introduction

The main result of this paper is Theorem 3.2. It states asymptotic normality of
the kernel type density estimator when the set of locations of observations become
more and more dense in an increasing sequence of domains. It turns out, that
the covariance structure of the limiting normal distribution depends on the ratio
of the bandwidth of the kernel estimator and the diameter of the subdivision.
This is an important issue when we approximate the integral in the estimator
fTn(x) =

1
|Tn|

1
hn

∫
Tn
K
(
x−ξt
hn

)
dt by a sum, i.e. in applications we use an estimator

of the form fDn(x) =
1

|Dn|
1
hn

∑
i∈Dn

K
(
x−ξi
hn

)
.

This approach can be useful in geosciences, meteorology, environmental studies,
image processing, etc. In these sciences several processes varying continuously in
space are studied. However, in practice, we can not observe the processes contin-
uously in space. So we have to use finite data sets and discrete approximations.
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Moreover, the theoretical analyses of statistical models often need simulation meth-
ods. In computer simulations always discrete approximations are applied. So we
have to know if the limiting behaviour of the continuous model is the same as that
of its discrete counterpart.

Kernel type density estimators are widely studied, see e.g. Prakasa Rao [19],
Devroye and Györfi [9]. Several papers are devoted to the density estimators for
weakly dependent stationary sequences (see e.g. Castellana and Leadbetter [6],
Bosq et al. [5]). However, in most of the papers the goal is to find weak dependence
conditions of asymptotic normality. Only few papers study the relation of the rate
of dependence and the asymptotic behaviour (see e.g. Csörgő and Mielniczuk [8],
and Wu and Mielniczuk [22]). In [22] a detailed description is given for the limit
laws for linear random sequences.

The asymptotic normality of the kernel type density estimator is well known
for weakly dependent continuous time processes (see e.g. [5]). The paper [15] gives
an estimator for the asymptotic variance. However, when we calculate numerically
the kernel type density estimator, its asymptotic variance can be different from
that of the theoretical one. To point out this phenomenon is the goal of our paper,
and therefore we turn to so called infill-increasing setup.

In statistics, most asymptotic results concern the increasing domain case, i.e.
when the random process (or field) is observed in an increasing sequence of domains
Tn, with |Tn| → ∞. However, if we observe a random field in a fixed domain and
intend to prove an asymptotic theorem when the observations become dense in
that domain, we obtain the so called infill asymptotics (see Cressie [7]). It is known
that several estimators being consistent for weakly dependent observations in the
increasing domain setup, are not consistent if the infill approach is considered. In
this paper we combine the infill and the increasing domain approaches. We call
infill-increasing approach if our observations become more and more dense in an
increasing sequence of domains. In the theory of kernel type estimators the infill-
increasing approach is applied when optimal sampling is studied (see Masry [18],
Bosq [4] and the discussion in Remark 3.3 in the present paper).

Our approach and results fit well to recent researches. We shall compare our
main theorem with recent results on optimal sampling by Biau [2] and by Bosq
[4] in Section 3. We mention that in [20] the kriging, while in [17] the empirical
distribution functions were considered using infill-increasing approach.

In this paper we give an overview of some results. In Section 2 we present the
basic central limit theorem (CLT) for α-mixing random fields (Theorem 2.1). It
is analogous to Theorem 1.1 in [5]. Using Theorem 2.1, we can prove asymptotic
normality of the kernel type density estimator (3.2) in the infill-increasing case
(Theorem 3.2). The conditions are similar to those of Theorem 2.2 (continuous
time process) and Theorem 3.1 (discrete time process) of [5]. In some sense, our
result is between the discrete and the continuous time cases. Example 3.5 is a new
numerical evidence for the behaviour of the estimator. Our simulation results sup-
port the covariance structure of the limiting distribution presented in Theorem 3.2.
Theorem 4.1 is a functional version of the ordinary CLT, i.e. of Theorem 3.2. It is



Central limit theorems for kernel type density estimators 213

an unusual one as the convergence is proved in L2[0, 1], i.e. in the space of square
integrable functions defined in the interval [0, 1]. We have to mention that most of
the functional limit theorems are given in the space C of continuous functions, or
in the Skorohod space D, see [3]. However, there are papers establishing criteria
for functional limit theorems in Lp and containing applications of such theorems
(see [14], [16]).

2. A CLT for α-mixing random fields

The following notation is used. N is the set of positive integers, Z is the set
of all integers, Nd and Zd are d-dimensional lattice points, where d is a fixed
positive integer. R is the real line, Rd is the d-dimensional space with the usual
Euclidean norm ‖x‖. In Rd we shall also consider the distance corresponding to
the maximum norm: ̺(x,y) = max16i6d |x(i) − y(i)| , where x = (x(1), . . . , x(d)),
y = (y(1), . . . , y(d)). The distance of two sets in Rd corresponding to the maximum
norm is also denoted by ̺ : ̺(A,B) = inf{̺(a,b) : a ∈ A, b ∈ B}.
|D| denotes the cardinality of the finite set D and at the same time |T | denotes

the volume of the domain T .
We shall suppose the existence of an underlying probability space (Ω,F ,P). The

σ-algebra generated by a set of events or by a set of random variables will be denoted
by σ{.}. Sign E stands for the expectation. The variance and the covariance
are denoted by var(.) and cov(., .), respectively. Sign ⇒ denotes convergence in
distribution. N (m,Σ) stands for the (vector) normal distribution with mean
(vector) m and covariance (matrix) Σ.

Describe the scheme of observations. For simplicity we restrict ourselves to
rectangles as domains of observations. Let Λ > 0 be fixed. By (Z/Λ)d we denote
the Λ-lattice points in Rd i.e. lattice points with distance 1/Λ:

(
Z/Λ

)d
=
{(
k1/Λ, . . . , kd/Λ

)
: (k1, . . . , kd) ∈ Zd

}
.

T will be a bounded, closed rectangle in Rd with edges parallel to the axes and D
will denote the Λ-lattice points belonging to T , i.e. D = T∩(Z/Λ)d. To describe the
limit distribution we consider a sequence of the previous objects. I.e. let T1, T2, . . .
be bounded, closed rectangles in Rd. Suppose that

T1 ⊂ T2 ⊂ T3 ⊂ . . . ,
⋃∞

i=1
Ti = T∞. (2.1)

We assume that the length of each edge of Tn is integer and converges to ∞, as
n → ∞ (e.g. T∞ = Rd or T∞ = [0,∞)d). Let {Λn} be an increasing sequence
of positive integers (the non-integer case is essentially the same) and Dn be the
Λn-lattice points belonging to Tn.

Let ξt, t ∈ T∞, be a random field. The n-th set of observations involves
the values of the random field ξt taken at each point k ∈ Dn. Actually, each
k = k(n) ∈ Dn depends on n but to avoid complicated notation we often omit
superscript (n). By our assumptions, limn→∞ |Dn| =∞.
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We need the notion of α-mixing (see e.g. Doukhan [10]). Let A and B be two
σ-algebras in F . The α-mixing coefficient of A and B is defined as follows.

α(A,B) = sup{|P(A)P(B)− P(AB)| : A ∈ A, B ∈ B}.
The α-mixing coefficient of {ξt : t ∈ T∞} is

α(r) = sup{α(FI1 ,FI2) : ̺(I1, I2) > r}
where Ii is a finite subset in T∞ and FIi = σ{ξt : t ∈ Ii}, i = 1, 2. We shall use
the following condition. For some 1 < a <∞

∫ ∞

0

s2d−1α
a−1
a (s)ds <∞ . (2.2)

First we turn to the version of the central limit theorem appropriate to our sampling
scheme. Our Theorem 2.1 is a modification of Theorem 1.1 of Bosq et al. [5].
The novelties of Theorem 2.1 are the infill-increasing setting and that it concerns
random fields.

Define the discrete parameter (vector valued) random field Yn(k) as follows.
For each n = 1, 2, . . . , and for each k ∈ Dn

let Yn(k) = Yn(k
(n)) be a Borel measurable function of ξk(n) . (2.3)

We concentrate on the case when ξt and ξs are dependent if t and s are close
to each other. Therefore our theorem does not cover the case when Yn(k)’s are
independent and identically distributed. On the other hand, if ξt is a stationary
field with continuous covariance function and positive variance, then the covariance
is close to a fixed positive number inside a small hyperrectangle. We intend to cover
this case.

Theorem 2.1. Let ξt be a random field and let Yn(k) = (Y
(1)
n (k), . . . , Y

(m)
n (k))

be an m-dimensional random field defined by (2.3). Let Sn =
∑

k∈Dn
Yn(k), n =

1, 2, . . . . Suppose that for each fixed n the field Yn(k), k ∈ Dn, is strictly stationary
with EYn(k) = 0. Assume that ‖Yn(k)‖ 6 Mn where Mn depends only on n;
supn,k,r E

(
Y

(r)
n (k)

)2
< ∞; for any increasing, unbounded sequence of rectangles

Gn with Gn ⊆ Tn

lim
n→∞

1

Λd
n| ≫n |

E

[ ∑

k∈≫n

Y (r)
n (k)

∑

l∈≫n

Y (s)
n (l)

]
= σr,s, r, s = 1, . . . ,m, (2.4)

where ≫n= Gn ∩ (Z/Λn)
d; the matrix Σ = (σr,s)

m
r,s=1 is positive definite; there

exists 1 < a <∞ such that (2.2) is satisfied; and

Mn 6 c|Tn|
a2

(3a−1)(2a−1) for each n. (2.5)

Then
Sn/

√
Λd
n|Dn| ⇒ N (0,Σ), as n→∞. (2.6)

The proof is based on a version of Bernstein’s method applied in [5]. For details
see [11].
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3. A CLT for kernel-type density estimators

Now assume that the random field ξt, t ∈ T∞, is strictly stationary with un-
known continuous marginal density function f . We shall estimate f from the data
ξk, k ∈ Dn.

A function K : R → R will be called a kernel if K is a bounded, continuous,
symmetric density function (with respect to the Lebesgue measure),

lim
|u|→∞

|u|K(u) = 0,

∫ +∞

−∞
u2K(u) du <∞ . (3.1)

Let K be a kernel and let hn > 0, then the kernel-type density estimator is

fn(x) =
1

|Dn|
1

hn

∑
i∈Dn

K

(
x− ξi
hn

)
, x ∈ R . (3.2)

Let fu(x, y) be the joint density function of ξ0 and ξu, u 6= 0. Denote Rd
0 the set

Rd \ {0}. Let

gu(x, y) = fu(x, y)− f(x)f(y), u ∈ Rd
0, x, y ∈ R. (3.3)

We assume that fu(x, y) (and therefore gu(x, y)) is continuous in x and y for each
fixed u.

Denote by C(R2) the space of continuous real-valued functions over R2. Con-
sider the function u → gu(., .), u ∈ Rd

0. This is an Rd
0 → C(R2) mapping. For

the sake of brevity we denote this function by gu (and we consider it as the above
Rd

0 → C(R2) mapping). Let ‖gu‖ = sup(x,y)∈R2 |gu(x, y)|. It is the norm of gu(., .)
in C(R2). For the sake of brevity the function u → ‖gu‖ (which is an Rd

0 → R
mapping) will also be denoted by ‖gu‖.

Introduce the notation

σ(x, y) =

∫

Rd
0

gu(x, y) du , x, y ∈ R. (3.4)

For a fixed positive integer m and fixed distinct real numbers x1, . . . , xm let

Σ(m) =
(
σ(xi, xj)

)
16i,j6m

. (3.5)

Remark 3.1. In Theorem 3.2 we need approximations of the integral
∫
Rd

0
‖gu‖ du

with Riemannian sums. This procedure is usually applied only for bounded func-
tions defined in bounded closed domains. Therefore we turn to the idea of direct
Riemann integrability. The notion of direct Riemann integrability is well-known
for univariate functions (see e.g. [1], p. 118). That is somewhat stronger than
Lebesgue integrability. As we did not find appropriate references for multivariate
functions, below we describe the notion of direct Riemann integrability for nonneg-
ative functions defined on Rd

0 and being unbounded at the origin.
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Let l : Rd
0 → [0,∞) be given. For an h > 0 consider a subdivision of Rd into

(right closed and left open) d-dimensional cubes ∆i with edge length h such that
the center of ∆0 is the origin 0 ∈ Rd. If i 6= 0, for x ∈ ∆i let lh(x) = sup{l(y) :
y ∈ ∆i}, lh(x) = inf{l(y) : y ∈ ∆i}, while lh(x) = lh(x) = 0 if x ∈ ∆0. If

lim
h→0

∫

Rd

lh(x) dx = lim
h→0

∫

Rd

lh(x) dx = I

and this common value is finite, then l is called directly Riemann integrable and I
is its direct Riemann integral.

Theorem 3.2. Assume that gu is Riemann integrable on each bounded closed d-
dimensional rectangle R ⊂ Rd

0, moreover ‖gu‖ is directly Riemann integrable. Let
x1, . . . , xm be given distinct real numbers and assume that Σ(m) in (3.5) is positive
definite. Suppose that there exists 1 < a <∞ such that (2.2) is satisfied and

(hn)
−1 6 c|Tn|

a2

(3a−1)(2a−1) for each n . (3.6)

Assume that limn→∞ Λn =∞ and limn→∞ hn = 0. If

lim
n→∞

1/(Λd
nhn) = L <∞, (3.7)

then
√
|Dn|/Λd

n

{(
fn(xi)−Efn(xi)

)
, i = 1, . . . ,m

}
⇒ N (0,Σ

′(m)), as n→∞, (3.8)

where
Σ

′(m) = Σ(m) +D , (3.9)

and D is a diagonal matrix with diagonal elements Lf(xi)
∫ +∞
−∞ K2(u) du, i =

1, . . . ,m.
If, moreover, f(x) has bounded second derivative and limn→∞ |Tn|h4n = 0, then

in (3.8) Efn(xi) can be changed for f(xi), i = 1, . . . ,m, and the above statement
remains valid, i.e.
√
|Dn|/Λd

n

{(
fn(xi)− f(xi)

)
, i = 1, . . . ,m

}
⇒ N (0,Σ

′(m)), as n→∞. (3.10)

Proof. We have to check the conditions of Theorem 2.1. Let x1, . . . , xm be fixed
distinct real numbers and define the m-dimensional random vector Xn(i) with the
following coordinates:

X(r)
n (i) =

1

hn
K

(
xr − ξi
hn

)
− 1

hn
EK

(
xr − ξi
hn

)
, (3.11)

for r = 1, . . . ,m, and i ∈ Dn. Divide Tn into d-dimensional unit cubes (having Λd
n

points from Dn in each of them). Denote by D′
n the set of these cubes. Let Yn(k)

be the arithmetical mean of variablesXn(i) having indices i in the k-th cube. Then
for each fixed n the field Yn(k), k ∈ D′

n, is strictly stationary with EYn(k) = 0.
We shall apply Theorem 2.1 to Yn(k), k ∈ D′

n, i.e. we shall use a non infill form of
that theorem. For details see [12]. �
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Remark 3.3. (1) In [5] (for d = 1, i.e. for onedimensional parameter space) it
is shown that in the continuous time case the asymptotic covariance matrix is
Σ(m), while in the discrete time case it is a diagonal matrix with diagonal ele-
ments f(xi)

∫ +∞
−∞ K2(u) du, i = 1, . . . ,m. Therefore in the infill-increasing case

the asymptotic covariance matrix can be the same as in the continuous time case
(if L = 0) or a special linear combination of the ones of the continuous time case
and of the discrete time case.

(2) Formula (3.10) can be used to construct (asymptotic) confidence regions.
(3) For kernel type density estimators the magnitude of the mean square error

(MSE) and the optimal sampling are widely studied (see e.g. Bosq [4], Biau [2]).
Our aim is different, i.e. we prove asymptotic normality. However, our theorem
fits well to the results of the above mentioned papers. Their typical result (for
onedimensional state space and in our notation) is the following. Under suitable
mixing and analytical conditions

E (fn(x)− f(x))2 = O
(
|Tn|−1

)
, (3.12)

if Λn = |Tn|1/2dr, hn = |Tn|−1/2dr (see Proposition 7.1 in [4] for processes and
r = 2, and see Theorem 5.1 in [2] for fields and r > 0). So the rates in (3.8) and in
(3.12) are the same (besause |Tn| = |Dn|/Λd

n). We mention that for the above Λn

and hn we have Λnhn = 1, so (3.7) is satisfied.

Remark 3.4. Our assumptions on gu seem to be quite strong. However, we men-
tion that in Bosq et al. [5], Theorem 2.2 the (Lebesgue) integrability of ‖gu‖ is
assumed, which (assuming strong measurability of gu) is equivalent to the Bochner
integrability of gu.

Now we present a simple example that gives numerical evidence for the phe-
nomenon described in Theorem 3.2.

Let ξu, u ∈ Rd, be a stationary Gaussian random field with mean value function
zero and with covariance function ru. Assume that ru is continuous and r0 = 1.
In [12] it is proved that the improper Riemann integral

∫
Rd

0
‖gu‖ du exists and is

finite if the following three conditions are satisfied.

∫

O

1√
1− r2u

du <∞,
∫

N

[
1√

1− r2u
− 1

]
du <∞,

∫

N

∣∣∣∣
−r2u ± ru
1− r2u

∣∣∣∣ du <∞ (3.13)

for a (closed, bounded) domain O containing a neigbourhood of the origin and for
N being the complement of a bounded neigbourhood of the origin.

Example 3.5. Consider the Gaussian process ξu, u ∈ R, with mean zero and
covariance function ru = e−|u|, u ∈ R. This function satisfies the above mentioned
conditions (3.13). The direct Riemann integrability of ‖gu‖ is also satisfied. The
mixing condition (2.2) is also fulfilled, see Rozanov [21], Ch. IV, Sect. 11. (As
the parameter space in this example is onedimensional we can apply the notion of
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the α-mixing coefficient and the CLT given in [5].) Using this model, we obtained
simulation evidence for Theorem 3.2.

We observe this process in the 1/Λ-lattice points of the domain T = [0, t] with
Λ = 200 and t = 100. That is the sample is z1 = ξ(1/200), . . . , zs = ξ(20000/200)
with s = 20000. Now the covariance matrix of this data vector is (r|i−j |)si,j=1,
where r = e−1/Λ. Therefore the data generation for the simulation is easy. Let
y1, . . . , ys be i.i.d. standard normal and choose zi = ri−1y1+

√
1− r2∑i

j=2 r
i−jyj ,

i = 1, . . . , s.
Using this data, we gave kernel estimation for the density function of the process

(i.e. the standard normal density function). We calculated the estimator at points
x1 = −2, x2 = −1, x3 = 0, x4 = 1, x5 = 2. We used values of the bandwidth:
h1 = 0.01 and h2 = 0.001. We applied the standard normal density function as
kernel K.

The simulations were performed with MATLAB. 500 repetitions were made.
The data sets for h1 = 0.01 and h2 = 0.001 were the same. The theoretical values
of the density function and the averages of their estimators are shown in Table 1.

x -2 -1 0 1 2
f(x) 0.0540 0.2420 0.3989 0.2420 0.0540

h = 0.01 estimators’ mean 0.0543 0.2418 0.4003 0.2414 0.0518
h = 0.001 estimators’ mean 0.0528 0.2422 0.4026 0.2445 0.0492

Table 1

Then we calculated the empirical covariance matrices of our standardized esti-
mators (according to equation (3.8), the standardization factor is

√
|D|/Λ = 10).

Σ1 =




+0.0683 +0.0320 −0.0308 −0.0444 −0.0135
+0.0320 +0.2307 −0.0258 −0.1356 −0.0453
−0.0308 −0.0258 +0.2442 −0.0355 −0.0284
−0.0444 −0.1356 −0.0355 +0.2421 +0.0388
−0.0135 −0.0453 −0.0284 +0.0388 +0.0598



;

Σ2 =




+0.1339 +0.0379 −0.0296 −0.0451 −0.0162
+0.0379 +0.5481 −0.0085 −0.1544 −0.0482
−0.0296 −0.0085 +0.7092 −0.0416 −0.0205
−0.0451 −0.1544 −0.0416 +0.6002 +0.0459
−0.0162 −0.0482 −0.0205 +0.0459 +0.1116



.

Covariance Σ1 corresponds to bandwidth h1 while Σ2 corresponds to bandwidth
h2. The difference of the diagonals of Σ2 and Σ1 seems to be significant.

Now calculate the additional terms of the covariance matrices described in The-
orem 3.2. In our case

1

Λ

1

h
f(xi)

∫ +∞

−∞
K2(u) du =

1

200

1

h
f(xi)

1

2
√
π
.
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Therefore the diagonal elements of the matrix D in Theorem 3.2 for h1 = 0.01 and
h2 = 0.001 are the following:

diagD1 =
[
0.0076 0.0341 0.0563 0.0341 0.0076

]
;

diagD2 =
[
0.0762 0.3413 0.5627 0.3413 0.0762

]
.

As in the infill-increasing case only the diagonals of the limit covariance matrices
can be different for different values of the bandwidth, we show in Table 2 the
diagonal of the differences of the empirical covariance matrices and that of the
theoretical covariance matrices.

diag(D2 −D1) 0.0686 0.3072 0.5064 0.3072 0.0686
diag(Σ2 − Σ1) 0.0656 0.3174 0.4649 0.3582 0.0517

Table 2

The results show that the diagonal matrix D of Theorem 3.2 explains well the
dependence of the limit covariance matrix on the bandwidth.

4. Functional CLT for kernel type density estimator

We shall present a functional central limit theorem in the space L2[0, 1]. In this
section we suppose that both f and fn are equal to 0 outside of the interval [0, 1].
If we restrict our study to densities and kernel functions with compact supports,
by appropriate transformation, this condition can be realized.

Theorem 4.1. Assume that gu is Riemann integrable on each bounded closed d-
dimensional rectangle R ⊂ Rd

0, moreover ‖gu‖ is directly Riemann integrable. Let
the function σ(x, y) defined in (3.4) be positive definite. Suppose that there exists
1 < a < ∞ such that (2.2) and (3.6) are satisfied. Assume that limn→∞ Λn = ∞,
limn→∞ hn = 0, and limn→∞ 1/(Λd

nhn) = 0. Assume that f(x) has bounded second
derivative and limn→∞ |Tn|h4n = 0. Then, as n→∞,

Ln(x) =
√
|Dn|/Λd

n [fn(x)− f(x)]⇒ G(x) (4.1)

in L2[0, 1] where G is a Gaussian process with mean 0 and with covariance function
σ( . , . ).

To prove our theorem we have to check the conditions given in [14] and [16]. The
convergence of the finite dimensional distributions is a consequence of Theorem
2.1. For the details see [13].
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