
Proceedings of the 7 th International Conference on Applied Informatics
Eger, Hungary, January 28–31, 2007. Vol. 1. pp. 193–201.

Modeling P2P protocols by cellular
automata∗

Gábor Balázsfalvi, János Sztrik

University of Debrecen, Hungary
e-mail: {gbalazsfalvi,jsztrik}@inf.unideb.hu

Abstract

Recent peer to peer (P2P) protocols have been investigated and tested by
discrete-event network simulators mainly. These simulators are usually rather
detailed and they allow individual settings for each peer, because every peer
is an individual entity. One of the drawbacks of this approach is the very
low simulation speed. To reach the steady state and to obtain the system
parameters are really difficult tasks.

In this paper we present another kind of simulation model for P2P net-
works based on cellular automata (CA). One of the benefits of our model is
the large amount of theoretical results associated with the global behavior of
CA. We show how standard distributed protocols can be modeled by the help
of CA. The correctness of the protocols can also be proved by this technique,
or – in some cases – counter-examples may be found.

Keywords: modeling, peer to peer network, cellular automaton

MSC: C.2.4 [Computer-Communication Networks]Distributed Systems

1. Introduction

Modeling protocols and algorithms used by distributed systems, focusing on
peer to peer (P2P) systems has become an important topic nowadays. Correct-
ness of network protocols is usually either mathematically proved or tested by
simulations. Those that are only simulated are not necessarily trustworthy; this is
unacceptable for some sort of applications, for example, where high level of security
and/or reliability is needed. More and more distributed protocols have come to
light due to their benefits against the regular client-server conception. The price is
that they cannot be modeled by the conventional tools using, for example, queuing

∗Research is partially supported by Hungarian Scientific Research Fund-OTKA K 60698/2006
and OTKA T049409. This work was also supported by grants of Xerox Foundation UAC (No.
1478-2004), USA.

193



194 G. Balázsfalvi, J. Sztrik

systems. They are usually designed on the desk and only simulation data are avail-
able at best. Our proposal gives more freedom in modeling distributed algorithms,
and on the other hand it allows showing their correctness in a more appropriate
way than traditional tools.

Our proposal is the usage of a rather old tool from a different area of computer
science, i.e. the cellular automata (CA). This paper continues with a discussion of
P2P networks and the algorithms we would like to model. Then we summarize the
recent use of tools to model and analyze these protocols. After it we define precisely
our CA concept, and we finish the paper by some examples and conclusion.

2. P2P Networks

2.1. Concept of P2P Networks

Distributed networks have existed since the 80s or before. The term P2P net-
work became used with the concept of distributed file sharing. Early attempts
were, for example, the Gnutella network and the Napster system. Up to that time,
sharing data happened in the following way. The client wanting to share something
had to look for a server with large amount of storage space and high bandwidth.
Then this client uploaded the data there, and other people who needed the same
data had to download from that server. If the data was popular, the server be-
came very overloaded. On the other hand, if the shared content was useless, it just
reserved costly space and network resources. Nevertheless, why is it necessary to
store the data on a server, if it is already available from the original client? Actu-
ally it is not the case. Clients wanting to download the data can download from
the original owner, and what is more, they can forward it to other clients. So the
data travels from one peer to another, so P2P means the type of the layout. The
peers become clients and servers at the same time. In general, every peer is equiv-
alent to one another. Another important feature of this layout is that the peers
are interconnected in an ad-hoc manner, because no peer is special. In general, no
client knows in advance where the data travels from, and he is not even interested
in these pieces of information, but knows the content only.

2.2. Use of P2P Networks

To solve the basic problems, these networks use well-known distributed algo-
rithms, for example, for security or communication, but need also new, special
algorithms. The above mentioned data sharing is just one example. It covers now
the BitTorrent, the Gnutella, the Kazaa, and so on.

Another kind of use is the modern chat-voice-video clients, like Skype, Microsoft
Live (MSN) Messenger, Yahoo Messenger, or the modern VoIP computer to tele-
phone softwares, where usually clients sign up for a well-known server when they
are online, and talk directly to each other when it is necessary.



Modeling P2P protocols by cellular automata 195

2.3. Protocols to Model

In this part we would like simply to enumerate some protocols which we are in-
terested in without attempting to be comprehensive. Probably the most important
protocol is the delivery of a message. Here one of the interconnected peers creates
a message it wants to send to the other peers or to a special client.

Solving the problem of message delivery, we can build up complicated protocols.
An important one is the distributed synchronization. Here we use the messages as
signals that spread over the peers and change their states. We will discuss about
this protocol in details later in the section of examples.

Hash table protocols are even more complicated and they are building bricks of
other protocols. Here the task is to store key-value pairs in a distributed manner.
The pairs should be distributed uniformly among the participants. One from out-
side of the system has to know only one peer’s address and the protocol to invoke
the hash table, for example, as a web service.

On the top of distributed hash tables - and also without them - we can build
different distributed content sharing algorithms. Some of them are widely used,
such as the BitTorrent. The standard BitTorrent does not use distributed hash
tables, but a central server to store metadata about the files that are stored in the
system. On the other hand there are investigations to extend this protocol to be
totally distributed. This is very useful when no central address can be assumed.
For instance, we could talk about ad-hoc networks where the peers connect and
disconnect in every minute, and there is not any standard one among them. In an
ad-hoc network it is hardly possible to use any server based algorithm.

Last but not least we also mention the replication protocols. They are used by
highly loaded content servers, for example, enterprise file servers that have to work
in real time. The point is that the occasionally required data should be stored only
once while popular data would be put on many servers. Those copies have only
one common address. When the user goes to this address the system decides which
server will serve him, and tries to distribute the load by redirections.

3. Network Modeling Technics

3.1. Stochastic Modeling

Traditional client server architectures and protocols over them are very often
modeled by queuing systems. The server has usually one or more queues what the
clients line up in. We can also associate different serving disciplines with these
servers, for example, the clients can have priority, can be served parallel or one
after the other; if so, we can choose between “last in first out” and “first in first
out” queues. Also, queues can have finite or infinite capacity. The arrival of the
clients and the serving time are independent random variables. All these things
are mathematically clear. Easy setups can be solved on paper by hand, while more
complicated ones are aided by computer tools.



196 G. Balázsfalvi, J. Sztrik

The downside is that this model does not suit P2P systems. Peers are intercon-
nected in an ad-hoc manner, but we cannot build connections or interactions into
the model. There are some papers in the literature trying to model e.g. BitTorrent,
but they usually go too far in generalization.

3.2. Discrete Event Simulation
Complex network systems are very often modeled by discrete event simulators in

the last resort. They are disliked because the given results are not always reliable.
Using such a simulator needs a lot of experience, and even in that case making
mistakes is very easy. The simulation time is often very long, sometimes it takes
days to get results with one setup of parameters.

To have some good words about them we can say that they are capable to model
every sort of networks and protocols. If no known tool satisfies our needs, we can
take some general simulator kernel and write our model programmatically in a few
days. Then we can measure any parameter and compute any result that we need
without elaborate mathematics or formulas. The quasi randomness can be ensured
by semi random number generators, which also means that we can repeat the same
sequence of events many times using different parameter setup in the system.

4. Cellular Automata

4.1. Definition
In this section we are going to define and describe exactly what CA are. First

we have to define cellular space.

Definition 4.1 (Cellular space). The cellular space (CS) is the Zn n dimensional
space together with one copy of a special deterministic finite automaton (DFA) in
each cell. These copies are also referred to as cells. This automaton consists of a
state set S, an initial state s0 ∈ S, and a transition function δ : Sk 7→ S. We also
have a k dimensional vector v of coordinates of n dimension. This determines the
so-called neighbors of the cell. Usually v0 = (0, 0, . . . , 0), but not necessarily. If
the coordinates of the actual cell are denoted by C, the δ function must be applied
to the states of the cells C + v0, C + v1, . . . , C + vk−1 to get the new state of the
actual cell. All of the mentioned properties of the copies must be common but the
initial state.

The automata are working parallel and synchronized. They make one step
at each time segment. The transition function collects the actual states of the
neighbors - which is the initial one at the beginning - and makes the decision on
the next state.

Definition 4.2 (Cellular automaton). Let us be given a CS and the participating
automata have a special state sf such that

δ(sf , si0 , , si1 , . . . , sik−2
) = sf



Modeling P2P protocols by cellular automata 197

for every state sequence si0 , , si1 , . . . , sik−2
, and we require the first parameter of

the transition function δ to refer to the state of the actual cell. It is also important
that this special state is not reachable from any parameterization of δ. There are
only finite number of cells having an initial state different from sf . Then we call
this space a cellular automaton (CA).

As an example, the two dimensional case is illustrated in Figure 1. Here we can
see a rectangular “fence”. All the cells inside this fence denoted by colors and pure
white, are not in the state sf , but the cells outside of the “fence” and the “fence”
itself is in this special state. It is clear now that the cells outside of the “fence”
will remain in the sf state forever, while the ones inside will never change into this
state.

Figure 1: 2 dimensional cellular automaton

4.2. Neighborhoods

The δ transition function is special in a sense that it does not depend only
on the cell’s own state, but also on some other cells’ state. This was defined in
the previous part. Now we show some special neighborhoods often used in the
literature.

All used neighborhoods include the actual cell itself. The Moore neighbor-
hood includes the cells the coordinates of which differ from the actual cell in any
place but with at most one. In one dimension these are the left and the right
neighbors, while in two dimension, if the actual cell has coordinates (0, 0), it con-
tains (−1,−1), (0,−1), (1,−1), (−1, 0), (0, 0), (1, 0), (−1, 1), (0, 1), (1, 1). It has also
a modified version where only the nonnegative coordinates play role. The other
important neighborhood is named after Von Neumann. This includes the cells with
coordinates not differing more than one in sum from the actual cell’s coordinates.
In one dimension this means the same as before, but in two dimensions, it con-
tains only 5 cells: (0,−1), (−1, 0), (0, 0), (1, 0), (0, 1). We show these examples in
Figure 2. We can certainly consider also different constant than one.



198 G. Balázsfalvi, J. Sztrik

Figure 2: Neighborhoods. From left to right and up to down: 2 dimensional arbitrary,
Moore, Von Neumann, and either Moore or Von Neumann in 1 dimension

5. Examples

5.1. Message Delivery

This example uses any number of peers interconnected according to the one
dimensional Von Neumann neighborhood. The first peer wants to send a message
to all the others. For this, we use a special state in the state set S to denote the
message. The transition function we use changes into that message state, when
sees it at one of its neighbors and has never seen it before, i.e. the actual cell is
still in the initial state. It can also remember where the message came from (left
or right). When it sees the message at its own cell in the next step it erases the
message, and remembers that it has already met this message. By this very simple
algorithm, the message travels through all the peers, reaching them only once. By
using more states, the “speed” of the message can be decreased to moving one in
every two steps (12 ), two in every five steps (25 ), or to any rational number between
0 and 1.



Modeling P2P protocols by cellular automata 199

5.2. Synchronization

t
im

e

Figure 3: Synchronization process

The next example is the synchronization problem. We have some peers con-
nected to each one, again according to the one dimensional Von Neumann neighbor-
hood. Their task is to get into a common state exactly at the same time without
even knowing how many they are. For this, the first one, the leftmost, sends a
message towards the last one, the rightmost, with a speed of one, and another with
a speed of 1

3 . After this, the first peer changes its state to a “ready to fire” state.
When the first message reaches the rightmost peer, it sends back the same message.
When this message meets the other one traveling slower, the actual cell is starting
to behave like the first one: it sends two messages to the right; and additionally
it sends the same kind of messages to the left, and changes its state to a “ready
to fire” state. Sooner or later every peer will be ready to fire due to the recursion.
When a cell becomes ready, and all its neighbors are ready too, it can fire. You
can see this all in Figure 3.



200 G. Balázsfalvi, J. Sztrik

5.3. BitTorrent Simulation

Our last example is the model of the BitTorrent file sharing system. In Bit-
Torrent, the data is sliced to hundreds of pieces. Clients download from one other
these small junk of data parallel. However, here we use only two pieces of data to
distribute among the participants for the sake of simplicity. There are 9 peers and
they are interconnected according to the two dimensional Von Neumann neighbor-
hood. At the beginning, the middle one has all the two pieces while the other 8 do
not have anything. Then as time goes on, the neighbors copy the pieces one after
the other. First they try to download from the central peer, but when another
neighbor has it already, they can take the piece from that one too. At the end, the
4 peers in the corner have all the pieces too, even though they do not flank on the
central peer. A snapshot of this process can be seen in Figure 4.

Figure 4: BitTorrent simulation

6. Conclusion and further work

In this paper we pointed out the drawback and the benefits of the standard
modeling methods used to model P2P networks. Then we proposed a new method
for this task. This new method uses cellular automata, which are also defined
in this paper. We showed the way of modeling some often used protocols by
cellular automata too. We plan to create a modeling tool which works with cellular
automata. We also would like to model some other protocols, e.g. distributed hash
tables, and obtain the properties of that protocols by the modeling tool.

References

[1] Lindenmayer, A., Rozenberg, G., Automata, Languages, Development, North-
Holland, (1976).



Modeling P2P protocols by cellular automata 201

[2] Farmer, J. D., Toffoli, T., Wolfram, S., Cellular Automata, Proceedings of an
Interdisciplinary Workshop at Los Alamos, New Mexico, March 7-11, (1983), North-
Holland, (1984).

[3] Mullender, S., Distributed systems, Wokingham: Addison-Wesley, 2nd ed., (1993).

[4] Anceaume, E., Puaut, I.: Performance evaluation of clock synchronization algo-
rithms, Technical report, RR-3526, INRIA, Rennes, France, (1998).

[5] Tanembaum, A., van Steen, M., Distributed systems: Principles and paradigms,
Prentice-Hall, (2004).


