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Abstract
The paper proposes a system of pre-processing for X-ray images of welds

that look like textures by mean of Pulse-Coupled Neural Networks (PCNN).
In fact the original PCNN and none of its derivative models do not specify any
stopping criterion. As the anomalies found in the images show a lot of irregu-
lar textels, the paper makes use of co-occurrence matrix based parameters to
determine the amount of iterations needed in the PCNN algorithm extended
by an iteration counter. The paper first adaptively specifies a co-occurrence
matrix among of the possible ones and computes its parameters. In the
second stage, these parameters are mapped to PCNN iteration numbers by
mean of classical neural network trained for this purpose. The proposed pre-
processing produces more deterministic results that embed discriminatory
and generalisation properties in the feature vectors. The extended PCNN
also produces a geometrical invariant feature sets compared to known classi-
cal pre-processing approaches.
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1. Introduction

This paper discusses the filtering of industrial welds for their future inspection in
computer vision systems. Figure 1 shows X-ray images of welds labelled according
to some typical problems of common interest. They images have in common the
following properties:

They are not classical patterns having forms or other geometrical features. They
are strongly irregular textures and are very noisy. Textels are textural elements
that replicate their self over a region of an image with some possible variation in
their size, orientation, spread or even the intensity of the pixels composing them.
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Figure 1

Classically, the goal of texture analysis is to quantify properties such as smooth-
ness, coarseness or the regularity. Here the structural approaches are to be dis-
carded because they are suited strictly for ordered textures. The only use of spectral
or statistical methods does not lead to a result which meets the goal of enhanc-
ing class separation and generalization for further processing in computer vision
systems.

Figure 2

Laws [3] introduced three basic 1x3 spatial filter masks, shown in equation (1.1),
L3, E3 and S3 for respectively local averaging, edge detection and spot detection.

L3 = [121]; E3 = [−101]; S3 = [−12− 1] (1.1)

By convolving pairs of these masks together, other sets of filters can be obtained. It
is difficult to filter the weld images by application of classical texture filters without
considerable lost of information. Figure 2 shows the degradation caused by some
of the filters mentioned above for spots detection.

The lost of information has a serious effect on the discriminative properties of
the images and can make difficult or impossible the design of a classifier for them.
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This paper takes in consideration recent researches in synergetics of the mam-
malian visual cortex that have lead to new paradigms in digital image processing.
It has been observed that information flows, in form of waves, travels in both di-
rections between the retina and the visual cortex. These patio-temporal entities
called auto-waves have been largely studied with the goal to be modelled later. It
has been proved that auto-waves essentially differ from classical waves in the fol-
lowing properties: there is no reflection from noises (irregularities) and when two
auto-waves collide they are both destructed. These properties are the base for the
invariant, under translation, rotation and scaling, visual pattern processing. PCNN
are auto-wave-based artificial neural network models that give new opportunities
in digital image processing. A comparative study [1] shows the most 20 important
neuro-computational features of biological spiking neurons, each of them can be
chosen for building and simulating PCNN of different behaviours.

This paper will briefly show in the following an historically important formalism:
the Hodgkin-Huxley [2], and two others: the Eckhorn model, which has plenty of
parameters to setup and used in simulations with no major time constraints, finally
the ICM (Intersecting cortical Model) which computational efficiency is proved and
implemented [2] in real world problem solving.

1.1. Models of the visual cortex

1.1.1. The Hodgkin-Huxley model

This first model, built fifty years ago, lays on the cellular membrane potentials
as follows:

I = m3hGNa(E − ENa) + n4GK(E − EK) +GL(E − EL) (1.2)
dm

dt
= am(1−m)− bmm (1.3)

The above equations express the ionic current I across the cellular membrane in
terms of E the total potential of relevant chemical components (sodium, potassium
and leakage) within the cellule, their respective individual potential (EK , ENa and
EL) and conductance (GK , GNa and GL). The term m is the probability that the
ionic current will open transmission channel trough the cell. This model gives the
behaviour of neurons in form of differential equation as an oscillatory process. The
quantities am and bm are the rate of a particle for not opening and for opening
it, and both are functions of E and the chemical element in action (Na or K).
A deeper description is found in [2], with more equations and tens of parameters
by setting of which the model can emulate all the neuro-computational properties
given in [3].
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1.1.2. The PCNN/ICM model: architecture and algorithm

Figure 3

If the Hodgkin-Huxley model is purely behavioural, the PCNN model gives a
digital model implementing the Heckhorn’s connectionist model, based on studies
of the cat visual cortex. Its structure, shown in Figure 3, consists of three parts: the
perceptive, the modulation and the output pulse generator. The perceptive part
receive stimulus from other neurons through two channels: the feeding F dealing
with both a local and an external stimulus, and the linking L, with only the local
one. The linking and feeding parts are combined to give U the internal state of
the PCNN. The standard PCNN model is computed by evaluating iteratively the
following equations:

Fij [n] = eαFδnFij [n− 1] + Sij + VF
∑

kl

MijklYkl[n− 1] (1.4)

Uij [n] = Fij [n]{1 + βLij [n]} (1.5)

Lij [n] = eαLδnLij [n− 1] + Sij + VL
∑

kl

WijklYkl[n− 1] (1.6)

Yij [n] =

{
1 if Uij [n] > Θij [n]
0 Otherwise

(1.7)

Θij [n] = eαΘδnΘij [n− 1] + VΘYij [n] (1.8)

Where M and W are the synaptic weight-matrices through which the neigh-
bouring neurons communicate with a given PCNN, VF and VL are normalizing
constants.
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1.1.3. The ICM model

ICM is the simplest and it is the intersection of several visual cortex models [2].
Its internal state F, dynamic threshold Θij and output Y are computed as follows:

Fij [n+ 1] = fFij [n] + Sij +W{Y }ij (1.9)

Yij [n+ 1] =

{
1 if Fij [n+ 1] > Θij [n]
0 Otherwise

(1.10)

Θij [n+ 1] = gΘij [n] + hYij [n+ 1] (1.11)

where f , g and h are constants with the constraint f > g.

2. The proposed pre-processing stage and results

As there are no boundaries of a particular object on the images no direct geomet-
rical (translation, rotation, size) invariant transformation could not be considered.
The constraint, to take account all the pixels lying in the region of interest (ROI),
was evident. A ROI size 105 x 274 pixels, was enough to contain all typical defects
in the images of the welds. Each ROI was obtained by convolving a window of 105
x 274 pixels with the current image, from left to right and from top to bottom.
Each window, in both x and y directions, had at least an overlapping of 25% with
its neighbouring previous positions. The pixels that fell into the current window
were used to calculate a slop histogram onto each axis x and y, with the goal to
estimate the homogeneity of its content in term of pixel intensity. In the case
of heterogeneous ROI as it can be determined by the flatness of one of the slope
histogram.

2.1. Application of the discret wavelet transformation
The images presented in table 1 could not pre-processed by traditional texture

filtering methods like those cited in [3], because of the diversity in terms of “gran-
ularity” and “irregularity” of the texture. At the same time, images that belong
to different categories may look very similar. The experiments showed that the
wavelet analysis was enough sensitive to produce the data structure that could be
used for features selection. An image DWT transform gives frequency and spa-
tial information too, it can be considered semantically as the filtering of images
by combining two filters – low and high pass applied simultaneously at the same
time, but separately on the rows and columns of the original image. The result
was a set of four images, which are the output of low/low, low/high, high/low and
high/high, row/column filters. The DWT of images leads to its decomposition in
four components: the approximation, and the details in three orientations: hor-
izontal, vertical and diagonal. The same transform may be then applied on the
output of the low/low filter in the previous stage, if it is needed. The paper used
the Daubechies 9 wavelets to extract spatial features from the images of welds. It
can be seen in Figure 3 that the resulting sub-images look like ordinary textures.
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Figure 4

Here the aim of wavelet transformation is not to achieve a compression of im-
ages. The computed wavelet coefficients are located in four matrixes; they are
not quantized but are instead saved for use as input to the ICM as it was been
described above in the paper. The number of stages in wavelet decomposition that
leaves the weld images distinguishable or interpretable by human eyes is two. This
number can then be the natural stopping criterion for the analysis process instead
of the result of an entropy calculation. In this paper only one stage is accomplished
to reduce the amount of data to be processed without loosing of accuracy in the
final results.

Differences between some images of different category can be very small, as can
be seen in Figure 1. On the other hand the differences between ones of the same
category can be significant. This is a potential problem for some methods filtering
techniques based on the calculation of dot products during convolution of the filter
mask with the image.

There exist a large number of wavelet families having different analysis prop-
erties. Among these properties, in this paper, the experiments show that two are
of relevant importance: the regularity and the capacity of sensing high order poly-
nomial components of the analysed signal. The first one is a structural property
of the Daubechies 9 wavelets that makes them to be excellent in local regularity
or irregularity extraction. On top of this, there is a fast orthogonal transform im-
plementing its algorithm. The second property is obtained by setting the number
of vanishing moments to 10. Since, initially the amount data to be processed is
enough large the paper used the DWT instead of CTW which is time consuming
leaving a lot of redundant output coefficients. It is important to notice that the
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four sets of coefficients of the SWT are considered as four complementary sides of
the original image.

2.2. The modified PCNN algorithm

The PCNN/ICM models do not need training in difference of several neural
networks models; hence they need a lot of parameters to be initialized. The paper
used the both PCNN and ICM models without any sensible difference in results,
but the ICM algorithm was twice fast. The input to the PCNN/ICM is the nor-
malised 105 x 274 2D matrix of each subset of data (from a given sub-band filter)
generated by the DWT from the original grey-scale image. The weakness of the
original the PCNN algorithm is the no-existence of a general stopping criterion, in
other word the number of iteration is application specific and is not yet formalised.
Without a specified number of iterations the PCNN processing turns in time wast-
ing and on top of that the feature extraction can not embed generalization and
discrimination constraints needed for future categorization. Another problem that
correlates with the original PCNN algorithm is the impossibility to generate ge-
ometrically invariant feature set and consistent data structure by calculating the
signature of the resulting output image in each iteration, as described in [2].

This paper uses the empiric solution by examining visually the binary outputs
of PCNN and registered the exact number of iterations needed for each image in a
set of 150 images.

Experimental foundations of the proposed method are based on the following
observations:

• The number of iterations needed for the PCNN to produce good results is
image category independent variable.

• The number of iteration cannot be expressed by first-order texture statistics

• The weld images that needed the same number of iterations for processing,
have nearly the same values for texture features based on the gray-level co-
occurrence (GLCM).

• The mapping can be done by mean of classical regression ANN having a
reasonable size.

The proposed GLCM features are:

• Contrast:
F0 = −

∑

i

∑

j

(i− j)2P [i, j] (2.1)

• Energy or Angular Second Moment:

F1 =
∑

i

∑

j

P 2[i, j] (2.2)
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• Homogeneity:

F2 =
∑

i

∑

j

P [i, j]

1 + [i− j] (2.3)

• Correlation:
F3 =

∑

i

∑

j

(i− µ)(j − µ)P [i, j]
σ2

(2.4)

The table below shows the input GLCM features and the output of the regres-
sion ANN for the images already shown in Figure 4.

F0 F1 F2 F3 PCNN
iterations

Solid inclusions 934.7242 0.0050322 0.21307 0.82643 17
Gas inclusion 767.5 0.0059825 0.24779 0.88234 14
Melt edge 979.66 0.0011426 0.19354 0.87773 9
Under-built seam root 510.37 0.0014192 0.21113 0.94138 3
Under-built seam head 851.95 0.0023694 0.21393 0.86839 6
Over-built seam head 923.92 0.0019568 0.18794 0.80033 21

Table 1

Figure 5 shows the processed images as indicated by the output of the regression
ANN.

The modifications added into the original PCNN as resumed as following:

• An iteration memory trained by regression ANN is added.

• Two counters are added to the PCNN architecture. The first C1 stores the
actual and effective number of iterations; the second C2 is the maximum
number of iterations obtained during training the iteration memory. When
C2 is enabled, the PCNN grid can be used for image signature generation
and there is problem with missing values in the signature vectors because all
have the same length, so the input data structure for a further classifier is
consistent.

• A perceptive “curtain” is added that is enabled when C1 reaches the zero
value.

A relevant parameter setting in the PCNN grid is the initialization synaptic
weights matrices M and W. Here the connection mode is given by a 5 × 5 kernel
matrix K which is Gaussian type. The central element of K matrix is 1 and the
others are generated by evaluation of the Euclidian distance between two neurons.
The PCNN kernels are important because their type affects the auto-wave in the
grid.

All computational experiments were done in the Matlab software environment
using the signal processing, image processing and neural networks toolboxes.
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Figure 5

3. Conclusions

The experiments show that the wavelet transform as image multi-resolution fea-
ture extraction tool on top of a spiking neural network in occurrence the modified
PCNN model can extract features that meet two important criterions: generalisa-
tion and discrimination. These goals are not satisfied when using classical filtering
methods based on dot products calculation.

The modified PCNN architecture uses variable iteration numbers, to improve
immunity against noises caused by over or under processing.

The proposed pre-processing produces more deterministic results that embed
discriminatory and generalisation properties in the feature vectors.

The extended PCNN also can produce a geometrical invariant feature sets com-
pared to known classical pre-processing approaches.

Further study can be done to formalise the stopping criterion.
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