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Abstract

In the paper [7] the author investigated the geodesic balls of the Nil space
and computed their volume, introduced the notion of a type of Nil lattices,
Nil parallelepiped and the density of the lattice-like ball packing. Moreover, I
have determined the densest packing with congruent geodesic balls where the
ball centres form a type of integer lattices in the Nil space of Heisenberg
matrices. To this the projective-affine interpretation of Nil geometry has
been developed by E. Molnár in [1].

The careful analysis yields also the densest packing of density ≈ 0.78085
(larger than π√

18
≈ 0.74048 . . . for the analogous packing in the Euclidean

space) with convex balls of special radius. It is remarkable that the kissing
number of balls is 14 (in Euclidean space this number is 12). The projection of
the optimal packing onto the Euclidean subplane of Nil will have hexagonal
symmetry as the optimal circle arrangement of the Euclidean plane.

In this manner the geodesic lines, geodesic spheres and Nil lattices can
be visualized on the Euclidean screen of computer, and this is the aim of the
present paper. This visualization shows surprising phenomena as well. E.g.
balls of radius > π/2 are not convex, balls of radius > 2π deserve not to be
defined.

1. On Nil geometry

The Nil geometry can be derived from the famous real matrix group L(R)
discovered by Werner Heisenberg. The left (row-column) multiplication of
Heisenberg matrices



1 x z
0 1 y
0 0 1





1 a c
0 1 b
0 0 1


 =



1 a+ x c+ xb+ z
0 1 b+ y
0 0 1


 (1.1)
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defines “translations” L(R) = {(x, y, z) : x, y, z ∈ R} on the points of the space
Nil = {(a, b, c) : a, b, c ∈ R}. These translations are not commutative in general.
The matrices K(z) ⊳ L of the form

K(z) ∋



1 0 z
0 1 0
0 0 1


 7→ (0, 0, z) (1.2)

constitute the one parametric centre, i.e. each of its elements commutes with all
elements of L. The elements of K are called fibre translations. Nil geometry can
be projectively (affinely) interpreted by the “right translations” on points as the
matrix formula

(1; a, b, c)→ (1; a, b, c)




1 x y z
0 1 0 0
0 0 1 x
0 0 0 1


 = (1;x+ a, y + b, z + bx+ c) (1.3)

shows, according to (1.1). Here we consider L as projective collineation group with
right actions in homogeneous coordinates. We will use the Cartesian homogeneous
coordinate simplex E0(e0),E∞

1 (e1),E∞
2 (e2), E∞

3 (e3), ({ei} ⊂ V4 with the unit
point E(e = e0 + e1 + e2 + e3)) which is distinguished by an origin E0 and by the
ideal points of coordinate axes, respectively. Moreover, y = cx with 0 < c ∈ R
(or c ∈ R \ {0}) defines a point (x) = (y) of the projective 3-sphere PS3 (or that
of the projective space P3 where opposite rays (x) and (−x) are identified). The
dual system {(ei)}, ({ei} ⊂ V 4) describes the simplex planes, especially the plane
at infinity (e0) = E∞

1 E∞
2 E∞

3 , and generally, v = u 1
c defines a plane (u) = (v) of

PS3 (or that of P3). Thus 0 = xu = yv defines the incidence of point (x) = (y)
and plane (u) = (v), as (x)I(u) also denotes it. Thus Nil can be visualized in the
affine 3-space A3 (so in E3) as well [3].

In [2] E. Molnár has shown that a rotation trough angle ω about the z-axis at
the origin, as isometry of Nil, keeping invariant the Riemann metric everywhere,
will be a quadratic mapping in x, y to z-image z as follows:

r(O,ω) : (1;x, y, z)→ (1;x, y, z);

x = x cosω − y sinω, y = x sinω + y cosω,

z = z − 1

2
xy +

1

4
(x2 − y2) sin 2ω +

1

2
xy cos 2ω.

(1.4)

The geodesic curves of the Nil geometry are generally defined as having locally
minimal arc length between their any two (near enough) points. The equation
systems of the parametrized geodesic curves g(x(t), y(t), z(t)) in our model can be
determined by the general theory of Riemann geometry (see [3]): We can assume,
that the starting point of a geodesic curve is the origin because of translations
(1.1).

x(0) = y(0) = z(0) = 0; ẋ(0) = c cosα, ẏ(0) = c sinα,

ż(0) = w; −π 6 α 6 π.
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The arc length parameter s is introduced by

s =
√
c2 + w2 · t, where w = sin θ, c = cos θ, −π

2
6 θ 6 π

2
,

i.e. unit velocity can be assumed. The equation systems of a helix-like geodesic
curve g(x(t), y(t), z(t)) if 0 < |w| < 1 [3]:

x(t) =
2c

w
sin

wt

2
cos
(wt

2
+ α

)
, y(t) =

2c

w
sin

wt

2
sin
(wt

2
+ α

)
,

z(t) = wt ·
{
1 +

c2

2w2

[(
1− sin(2wt+ 2α)− sin 2α

2wt

)
+

+
(
1− sin(2wt)

wt

)
−
(
1− sin(wt + 2α)− sin 2α

2wt

)]}
=

= wt ·
{
1 +

c2

2w2

[(
1− sin(wt)

wt

)
+
(1− cos(2wt)

wt

)
sin(wt + 2α)

]}
.

(1.5)

In the cases w = 0 the geodesic curve is the following:

x(t) = c · t cosα, y(t) = c · t sinα, z(t) =
1

2
c2 · t2 cosα sinα. (1.6)

Figure 1.b shows a geodesic curve in case w = 0 which is lying on the hyperbolic
paraboloid surface 2z−xy = 0. In Figure 2.a,b can be seen the path of a point P by
a rotation trough angle 2π about the z-axis at the origin and two sites of geodesic
curves OP at this rotation. The cases |w| = 1 are trivial: (x, y) = (0, 0), z = w · t.
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In Figure 1.a it can be seen a Nil geodesic curve with parameters α = π
6 , θ = π

4 ,
t ∈ [0, 8π].

Definition 1.1. The distance d(P1, P2) between the points P1 and P2 is defined
by the arc length of the shortest geodesic curve from P1 to P2.
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2. The geodesic ball

Definition 2.1. The geodesic sphere of radius R with centre at the point P1 is
defined as the set of all points P2 in the space with the condition d(P1, P2) = R.
Moreover, we require that the geodesic sphere is a simply connected surface without
selfintersection in the Nil space.

The body of the geodesic sphere of centre P1 and of radius R in the Nil space
is called geodesic ball, denoted by BP1(R), i.e. Q ∈ BP1(R) iff 0 6 d(P1, Q) 6 R.

Remark 2.2. Henceforth, typically we choose the origin as centre of the sphere
and its ball, by the homogeneity of Nil.

Figure 3.a shows a geodesic sphere of radius R = 4 with centre at the origin. In
Figure 3.b can be seen the cross-section of above ball lying in the coordinate plane
[x, z]. In [7] we proved the following theorems:

Theorem 2.3. The geodesic sphere and ball of radius R exists in the Nil space if
and only if R ∈ [0, 2π].

In work [7] we have determined the volume of the geodesic ball of radius R by
the following integral:

V ol(B(S)) = 2π

∫ π
2

0

X2 d Z

dθ
dθ =

= 2π

∫ π
2

0

(2 cos θ
sin θ

sin
(R sin θ)

2

)2
·
(
− 1

2

R cos3 θ

sin2 θ
+

cos θ sin (R sin θ)

sin θ
+

+
cos3 θ sin (R sin θ)

sin3 θ
− 1

2

R cos3 θ cos (R sin θ)

sin2 θ

)
dθ.

(2.1)
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In [7] we have examined the convexity of the geodesic ball in Euclidean sense
in our affine model and we have obtained the following theorem (see Figure 4.a:
R = 0.5, b: R = 6):

Theorem 2.4. The geodesic Nil ball B(S(R)) is convex in affine-Euclidean sense
in our model if and only if R ∈ [0, π2 ].

3. The discrete translation group L(Z, k)

We consider the Nil translations defined in (1.1) and (1.3) and choose two
arbitrary translations

τ1 =




1 t11 t21 t31
0 1 0 0
0 0 1 t11
0 0 0 1


 and τ2 =




1 t12 t22 t32
0 1 0 0
0 0 1 t12
0 0 0 1


 , (3.1)

now with upper indices for coordinate variables. We define the translation (τ3)
k,

(k ∈ N, > 1) by the following commutator:

(τ3)
k = τ−1

2 τ−1
1 τ2τ1 =




1 0 0 −t12t21 + t11t
2
2

0 1 0 0
0 0 1 0
0 0 0 1


 . (3.2)

If we take integers as coefficients, their set is denoted by Z, then we generate the
discrete group (〈τ1, τ2〉, k) denoted by L(τ1, τ2, k) or by L(Z, k). (See also Remark
2.2)

We know (see e.g. [3]) that the orbit space Nil/L(Z, k) is a compact manifold,
i.e. a Nil space form.

Definition 3.1. The Nil point lattice ΓP (τ1, τ2, k) is a discrete orbit of point P
in the Nil space under the group L(τ1, τ2, k)= L(Z, k) with an arbitrary starting
point P for all (k ∈ N, k > 1).

Remark 3.2. 1. For simplicity we have chosen the origin as starting point, by the
homogeneity of Nil.

2. We can assume that t21 = 0, i.e. the image of the origin by the translation τ1
lies on the plane [x, z].

In the following we investigate the most important case k = 1 where τ3 corre-
sponds to the fibre translation τ3 = τ−1

2 τ−1
1 τ2τ1.

We illustrate the action of L(Z, 1) on the Nil space in Figure 5. We consider a
non-convex polyhedron F = OT1T2T3T12T21T23T213T13, in Euclidean sense, which
is determined by translations τ1, τ2, τ3. This polyhedron determine a solid F̃ in the
Nil space whoose images under L(Z, 1) fill the Nil space just once, i.e. without
gap and overlap.
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Analogously to the Euclidean integer lattice and parallelepiped, the solid F̃ can
be called Nil parallelepiped.
F̃ is a fundamental domain of L(Z, 1). The homogeneous coordinates of the

vertices of F̃ can be determined in our affine model by the translations (3.1) and
(3.2) with the parameters tji , i ∈ {1, 2}, j ∈ {1, 2, 3} (see Figure 5 and (3.3)).
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y

Figure 5

T1(1, t
1
1, 0, t

3
1), T2(1, t

1
2, t

2
2, t

3
2), T3(1, 0, 0, t

1
1t

2
2),

T13(1, t
1
1, 0, t

1
1t

2
2 + t31), T12(1, t

1
1 + t12, t

2
2, t

3
2 + t31),

T21(1, t
1
1 + t12, t

2
2, t

1
1t

2
2 + t31 + t32), T23(1, t

1
2, t

2
2, t

3
2 + t11t

2
2),

T213 = T231(1, t
1
1 + t12, t

2
2, 2t

1
1t

2
2 + t31 + t32).

(3.3)

We have determined in [7] the volume of F̃ by det(
−→
OT 1,

−→
OT 2,

−→
OT 3) = (t11 · t22)2

from (3.3) or by the following integral:

V ol(F̃) =
∫ t22

0

∫ t11

0

|t11 · t12| dxdy = (t11 · t22)2. (3.4)

From this formula it can be seen that the volume of the Nil parallelepiped depends
on two parameters, i.e. on its projection onto the [x, y] plane.
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4. Lattice-like geodesic ball packings

Let BΓ(R) denote a geodesic ball packing of Nil space with balls B(R) of radius
R where their centres give rise to a Nil point lattice Γ(τ1, τ2, 1). F̃0 is an arbitrary
Nil parallelepiped of this lattice (see (3.1),(3.2)). The images of F̃0 by our discrete
translation group L(τ1, τ2, 1) covers the Nil space without overlap. For the density
of the packing it is sufficient to relate the volume of the optimal ball to that of
the solid F̃0. Analogously to the Euclidean case it can be defined the density
δ(R, τ1, τ2, 1) of the lattice-like geodesic ball packing BΓ(R):
Definition 4.1.

δ(R, τ1, τ2, 1) :=
V ol(BΓ(R) ∩ F̃0)

V ol(F̃0)
, (4.1)

if the balls do not overlap each other.

Remark 4.2. By definition of the Nil lattice L(τ1, τ2, 1)(see Definition 3.1) the
orbit space Nil/L(τ1, τ2, 1) is a compact Nil manifold, and (see Section 2),

V ol(BΓ(R) ∩ F̃0) = V ol(B(S(R))).

The optimal lattice-like ball packing

We look for such an arrangement BΓ(R) of balls B(R), (see Figure 5) where the
following equations hold:

(a) d(O, T1) = 2R = d(T1, T3),

(b) d(O, T2) = 2R = d(T2, T3),

(c) d(T1, T2) = 2R,

(d) d(O, T3) = 2R.

(4.2)

Here d is the distance function in the Nil space (see Definition 1.1). The equations
(a) and (b) mean that the ball centres T1 and T2 lie on the equidistant geodesic
surface of the points O and T3 which is a hyperbolic paraboloid (see (1.6) and
Figure 6) in our model with equation

2z − xy = 2R.

By continuity of the distance function it follows, that there is a (unique) solution
of the equation system (4.2). We have denoted by Bopt

Γ (Ropt) the geodesic ball
packing of the balls B(Ropt) which satisfies the above equation system. We get
the following solution by systematic approximation, where the computations were
carried out by Maple V Release 10 up to 30 decimals:

t1,opt1 ≈ 1.30633820, t3,opt1 = Ropt, Ropt ≈ 0, 73894461;

t1,opt2 ≈ 0, 65316910, t2,opt2 ≈ 1, 13132206, t3,opt2 ≈ 1.10841692,

T opt
1 = (1, t1,opt1 , 0, t3,opt1 ), T opt

2 = (1, t1,opt2 , t2,opt2 , t3,opt2 ).

(4.3)
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The geodesic ball packing Bopt
Γ (Ropt) can be realized in Nil space because by

Theorem 2.4 a ball of radius Ropt ≈ 0, 73894461 is convex in Euclidean sense
and this packing can be generated by the translations Lopt(τ

opt
1 , τopt2 , 1) where

τopt1 and τopt2 are given by the coordinates tj,opti i = 1, 2; j = 1, 2, 3 (see (4.3)
and (3.1)). Thus we obtain the neigbouring balls around an arbitrary ball of the
packing Bopt

Γ (Ropt) by the lattice Γ(τopt1 , τopt2 , 1) , the kissing number of the balls
is 14. Figure 8.a,b show the typical arrangement of some balls from Bopt

Γ (Ropt)
in our model. We have ball “columns” in z-direction and in regular hexagonal
projection onto the [x, y]-plane (see Figure 7.a,b). The fundamental domain F̃opt
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of the discrete translation group Lopt(τ
opt
1 , τopt2 ) is a Nil parallelepiped of the above

determined Nil lattice Γ(τopt1 , τopt2 , 1). By formulas (2.1), (3.4) and by definition
4.1 we can compute the density of this ball packing:

V ol(F̃opt
0 ) ≈ 2, 18415656, V ol(BΓ(Ropt) ∩ F̃opt

0 ) ≈ 1, 70548775,

δ(Ropt, τ
opt
1 , τopt2 , 1) :=

V ol(BΓ(Ropt) ∩ F̃opt
0 )

V ol(F̃opt
0 )

≈ 0, 78084501.
(4.4)

In [7] we have proved the following Theorem:

Theorem 4.3. The ball arrangement Bopt
Γ (Ropt) given in formulas (4.3), (4.4)

provides the optimal lattice-like geodesic ball packing to the lattices Γ(τ1, τ2, 1) in
the Nil space.

Analogous questions in Nil geometry or, in general, in other homogeneous
Thurston [6] geometries are on our program with E. Molnár and I. Prok.

Acknowledgement. I thank Prof. Emil Molnár for helpful comments.
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