Proceedings of the 7" International Conference on Applied Informatics
Eger, Hungary, January 28-31, 2007. Vol. 1. pp. 139-146.

Simple digital objects on Z?*

Benedek Nagy®, Agota Orosz®

“University of Debrecen
Department of Computer Science
e-mail: nbenedek@inf.unideb.hu

Corvinus University of Budapest
Department of Mathematics
e-mail: agota.orosz@Quni-corvinus.hu

Abstract

In this paper we present some simple digital geometrical concepts. The
used spaces are the square grid (Z2) with the well-known metric distances
based by neighbourhood relations 4 and 8-neighbours. We define and anal-
yse some properties of the digital line segments, lines, circles, parabolas,
hyperbolas and ellipses.
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1. Introduction

The digital geometry is an important part of digital image processing. In this

paper we will use the square grid with distances based on 4-neighbourhood and on 8-
neighbourhood relations. We will use the notations (Z?2, 4) and (Z?, 8), respectively.
We will use the distance functions based on the possible shortest paths between

points using only the neighbourhood criteria of the plane in each step.
The purpose of this paper is to describe some simple geometrical objects of these

digital planes. Our aim is not to have digital objects which can represent Euclidean
object (it is the matter of the computer graphic). Our definitions are based on
digital distances and some characteristic Euclidean properties of the objects. We

will refer the pairs p = (p1,p2) € Z? as points.

*This work is partly supported by the grant OTKA F043090 and T049409, by a grant of

Ministry of Education, Hungary and by the Oveges programme of KPI and NKTH.
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2. Segments and lines

In this section we will define two natural concepts. The concept of the point
was an obvious choice in the digital plane. Now we are using the following Eu-
clidean property of the segments and lines: “they contain points of the shortest
path between two points”.

Since in the digital plane it can be several shortest paths between two given
points p, g € Z? we will chose some special ones.

First let us see the case of 4-neighbourhood.

Definition 2.1. Let p = (p1,p2) and ¢ = (g1, g2) be two different points in (Z2, 4).
A path II4(p, ¢) with minimal length is called segment between p and g if for all
r = (r1,r2) € Il4(p,q) at least one of the following conditions hold: r1 = py,
Tt =4q1, T2 = P2, "2 = q2.

This definition gives us the two extreme paths between the points, namely
the first is given by the points (p1 + sgn(q1 — p1)t, p2) where t = 0,...,|q1 — p1l;
(q1,p2 + sgn(ga — p2)t) with t = 0,...,|g2 — p2| and the second has the points
(p1,p2 +sgn(g2 — p2)t) with ¢t = 0,...,|g2 — p2| and (p1 + sgn(q1 — p1)t, g2) with
t=0,...,|qg1—p1|- When p; = g1 or pa = g2 then the above segments are identical.

._] #
Figure 1: Segments and lines connecting 2 points in (Z?2, 4)

These segments can be extended to lines of different types as follows.

Definition 2.2. Let p = (p1,p2) a point in Z? and s1,s2 € {—1,1}. We say that
L(p, 51, 82) is a (digital) line of the space (Z?2,4) if it is constructed by the following
points (py + s1t,p2) and (p1, p2 + sot) where t € N. Moreover, L"(ps) is called a
horizontal line if it has the points (¢,p2) for ¢ in Z and L¥(p1) is a wvertical line
analogously.

The next results show the differences between the Euclidean plane and (Z2,4).

Lemma 2.3. If p,q in Z% and py # q1, pa # qo then there exist exactly two lines
which contains both the points p and q. They are

L((p1,q2),sgn(q1 — p1),sgn(p2 — q2)) and L((q1,p2),sgn(p1 — q1),sgn(qz — p2)).

Lemma 2.4. If p and q are different points in Z2 and p1 = g1 or pa = qo then
there are one horizontal or vertical line and infinitely many other lines which con-
tain q and p. In the first case they are: L°(p1) and L((p1,t), s1,sgn(p2 —t)) where
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s1 € {—1,1} and t is an integer with the property sgn(ps — t)sgn(gz — t) > 0.
In the second case the horizontal line is L"(ps) and the other lines are
L((t, p2), sgn(p1 — 1), s2) where sy € {—1,1} and sgn(py — t)sgn(q — ) > 0.

The concepts defined above has the similar property as the Euclidean segments
and lines that we detail below. For any two points of a line there is a segment
such that it connects the points and it is a part of the line. Note here that using
another definitions of digital segments and lines this property may not hold for any
two points of the digital lines.

Definition 2.5. We say that two lines are parallel if all the points of either line
have the same distance from the other line.

Note, that it is not true for both lines that all of the points have the same
distance from the other line.

Now, let us analyse the fifth postulate of Euclid. It works in the following way
in (Z2,4).

Theorem 2.6. If Ly is a line and p is a point in Z> outside of L1, then there
exists a uniquely determined line which is parallel with Ly and contains p.

Now, let us define the analogous concepts in (Z2,8). Let us choose the segments
and lines on this plane based on the extremal shortest paths as well.

In general we can have two kinds of segments between points according to the
parities of the coordinate values of the points.

Figure 2: Segments and lines connecting 2 points in (Z2,8)

Definition 2.7. Let p = (p1,p2) and ¢ = (q1,¢2) are arbitrary points in (Z2,8).
We say that the minimal path IIg(p, q) is a segment connecting p and q if

|p1 —7“1| = |p2 —T2| or |Q1 —7“1| = |Q2 —7“2|

hold for all r = (ry,72) € Us(p, q).

These segments can be extended to lines in a similar way than in case of (Z2,4).
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3. Second order objects in (Z*, 4)

The digital circles on Z? are well examined. In this section we also describe
the digital ellipses, hyperbolas and parabolas using the previous concepts of points
and lines.

First the plane (Z2,4) is used. Let p be a given point in Z2. It is known that
the circle with center p and radius r has the points (p1 + s1t, p2 + sao(r — t)) where
0<t<randsy,ss € {—1,1}. These circles are built up from segments of (Z2,8)
and have diamond shapes. We can also determine the points of an ellipse.

Definition 3.1. Let p and ¢ be different points in (Z2,4) and r is a natural number.
The digital ellipse E(p,q;r) is the set of points z which has the property d(z,p) +
d(z,q) =r.

We remark that if » < d = d(p,q) or d and r has not the same parity then
E(p,q;r) has no points, hence it is sufficient to deal with ellipses of the form
E(p,q;d + 2h). Furthermore, the translation invariance and the symmetry of the
metric allows us to suppose that one of the focuses of the ellipse is the origin and
the other has nonnegative coordinates.

Theorem 3.2. If q € (Z%,4) is a point with ¢1,q2 > 0, d = d(0,q) and h is a
positive integer, then the points of E(0,q;d + 2h) are ezactly the following ones:
1. (—t,t —h), t=0,1,...h,

2. (~ty,g2+h—1t), t=0,1,...h,
3. (=h,t), t=0,1,...qo,
4 (tafh)a t=0,1,...q1,
5. q—u, for all previous points v in cases 1.,2.,3.,4.

Proof. The point (x,y) is an element of the ellipse E(0, ¢;d + 2h) if and only if
2| + [yl + 2 — a1| + [y — @2| = @1 + g2 + 2.

It is obvious, that if v = (z,y) is a point of the ellipse then ¢ — v also is an element
of E. If x <0 and y < 0 then x — ¢; and y — g2 are also nonnegative, so we have
for the above equation that —x — y = h, which gives us the case 1. in the theorem.
If x <0andy > g then y — x = g2 + h, which is case 2. If x <0, and 0 <y < ¢
then —x = h, and similarly, if y < 0 and 0 < = < ¢; then y = —h, these are case 3.
and 4. The remaining cases give points of the form g — v, where v satisfies one of
the previous conditions. On the other hand, it is easy to see that for the points in
the theorem the equation of the ellipse holds. O

Now we characterize the digital hyperbolas on the plane (Z2,4).

Definition 3.3. Let p and ¢ are different points in (Z?,4) and r is a natural
number. The set of all points v which have the property |d(v,p) — d(v,q)| = r is
called the digital hyperbola H (p, q;7).
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Theorem 3.4. Let ¢ € (Z2,4), q1,q2 > 0, d = d(0,q) and h > d/2 a positive
integer. The points of the digital hyperbola H(0,q;d — 2h) are exactly the following

ones:
1. (t,h—1t), max{0,h — ¢z} <t < min{q, h}
2. (a)if h>q, then (t,h—aq), t > q1,
(b) if h<gqi, then (h,t), t<0,
(C) h = q1, then (tl,t2)7 tl 2 qi1, tg < 0,
3. (a)if h>qa, then (h—qo,t), t=qo,
(b) if h<gqo, then (t,h), t<0,
(C) h = q2, then (tl,tQ)a t2 2 q2, t1 <0,
4. q—w, for all previous points v in cases 1.,2.,3.

Proof. The equation of the hyperbola’s branch which is closer to the origin:
[z —aql + 1y — @2l = |z[ = |yl = ¢1 + q2 = 2h.

It is easy to see that the point v = (x,y) satisfies this equation then ¢ — v is an
element of the other branch of the hyperbola. If x > 0 and y > 0, then the above
equation can be written in the form

2h=[z+q)—lr—aql|+(y+q) = |y — gl

that is h = min{z, ¢1 } + min{y, ¢o} and here h = ¢; + g2 = d is not possible. Hence
if £ > g1 then h =y + ¢1, and if h > ¢; then we have the case 2.(a), and similarly,
Yy = g2 gives the case 3.(a). When z < ¢; and y < go, then h = x + y, it is the case
1. Ifx >0,y <0 then |x — ¢1| — x = ¢1 — 2h, that means h = min{q, z}, and we
get the 2.(b) and 2.(c). Transposing the role of the coordinates x and y we have
3.(b) and 3.(c). Finally, if < 0 and y < 0 then h = 0, and this is a contradiction.
O

b

Figure 3: An ellipse and a hyperbola

Note that the lines connecting the focus points play the similar role as the axes
play at the objects in the Euclidean plane as it can be seen on the Figure 3.
The third important class of second order objects are the parabolas.
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Definition 3.5. Let L be a line and p be a point in (Z2,4). The digital parabola
P(L,p) is the set of points z which has the property d(z,p) = d(z, L).

As we have seen, there are different types of lines in (Z?2,4), therefore various
kinds of parabolas are possible. Here, for simplicity, we only give the points of
parabolas with directrix and axis as the coordinate axises.

Theorem 3.6. Let p = (0,p2) € (Z%,4) and pa > 0. The points of the parabola
P(p, L"(0) are those which have integer coordinates among the following ones:
1 (ip27t)a t>p27

2. (£(ps — 2t),pa —t), t=0,..., L%J

Proof. Note that the distance of the point (x,y) and the line L"(ps) is |y — pa|.
It is clear, that if a point (x,y) satisfies the equation of the parabola, which is
|z| + |y — p2| = |y|, then (—z,y) is also an element of P. The case y < 0 leads to

the contradiction |z| = —pa, so it is sufficient to investigate the case x > 0 and

y = 0. Now the equations has the form z + |y — p2| = y, so if y > p2 then z = po,
T+

and when y < po then y = 2p2. a

Similar characterizations are possible in cases of different lines, some examples
can be seen in Figure 4.

ML
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Figure 4: Possible parabolas in (Z?,4)

4. Second order objects in (Z2,8)

The digital circles on (Z2,8) have square shapes and they built up by segments
of (Z%,4). With center p and radius r it contains points (p; & sr + (1 — s)t,p2 +
st 4+ (1 — s)r) where —r <t < r and s € {0,1}.

We have similar characterization results for ellipses, hyperbolas and parabolas
on the plane (Z?2,8) as well. Using the notation of definitions 3.1 and 3.3, it is not
necessary for r and d to have the same parity, but certain parts of these objects
may be missing.
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Theorem 4.1. Let q € (Z%,8), q1 = q2 = 0,d = d(0,q) and h be a positive integer.
The points of the ellipse E(0,q;d + h) are the following ones (requiring that the
coordinates are integers):

1. (=h/2,t), —h/2 <t < h/2,

2. (L+a+h)/2), (+e@-—h)/2<t<(n+e+h)/2

3. (t—h,t), h/2<t<(q+q+h)/2,

4. (t,—h—1), —h/2<t < (1 — g2 — h)/2,

5. q—wv, for all previous points v in cases 1.,2.,3.,4.

Theorem 4.2. Let q € (Z2,8), q1,q2 = 0, d = d(0,q) and 0 < h < d be a natural
number. The points of the hyperbola H(0,q;d — h) are the following ones:

1. (h/2, t) max{—h/2,q2—q1 +h/2} <t < h/2,
2. (h—t,1), t>h/2,
3. (a )zf h>aq —q2, then (t,h+q—q —t), h/2<t,
(b) if h<q —qa, then (t,t—h), t<h/2,
(C) ’Lf h=q —qa, then (thtg), to < —h/2 , to+h <ty < —tg,

4. — or all previous points v in cases 1.,2., 3.
q p p ) ey

.:\:i:.l/. ."-,:-.. -
Figure 5: Possible ellipse, hyperbola and parabola in (Z?, 8)

Theorem 4.3. Let (p,p) € (Z%,8) and L(0) = {(s,—s)|s € Z}. The points of
the parabola P(p, L(0)) are the following ones (requiring that the coordinates are
integers):

L (t,(2p—1)/3), (/2] <t <2p-—1,

2. (t,(2p—t=1)/3), [p/2]<t<2p-—1,

3. (t,t—2p), 2p < t,

4. (Lt—2p—1), 2 +1<t

5. (q2,q1), for all previous points (q1,q2) in cases 1.,2.,3., 4.

Finally we show some examples of these digital objects in Figure 5.
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