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Abstract

In this work an improved classification algorithm is introduced, with the
help of which the usually time consuming searching part of fractal image en-
coding speeds up considerably without loss of the reconstruction fidelity. Two
parameters are used to sort image blocks into disjoint classes: the direction
of the approximate first derivative and a normalized root mean square error
of the fitting plane in the given block. With the help of these parameters the
number of domain blocks examined for a range block is reduced dramatically.
Using this algorithm the Lena 256 × 256 test image was encoded and the
encoding results were compared to recently developed fast algorithms. The
proposed method proved to be promising regarding the encoding time and
reconstruction quality.

Keywords: fractal image compression

1. Introduction

The basic idea of fractal image compression (FIC) technique was introduced by
Barnsley et al. [1, 2] two decades ago and the various applications and developments
of this method became an area of high interest. The importance of FIC is due to
that it is a promising ingredient for more effective hybrid compression methods
[20, 21, 22]. By the means of the Iterated Function System proposed by Barnsley,
there is a contractive transformation for each image that, according to the fix-point
theorem, has the fix-point identical to the image itself. In other words, applying
that transform (function) iteratively on an arbitrary starting image, the result will
converge to the original image, thus the image is encoded by the transformation.
Unfortunately the form of this transformation is far from trivial. A relatively
simple method to establish such a transform was invented by Jacquin [3, 4], who
partitioned the range and the domain image into square blocks and searched a
simple affin transformation between range and domain image blocks one by one as
introduced in the next section. This scheme proved to be useful however, its search
process is extremely time consuming. Since then, most of the research works dealt
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with the remedy of this serious drawback. The restriction of the domain pool was
the main point of numerous later efforts [5, 6, 7, 8], which will be treated in more
detail in the next section. Other researchers focused on improvements of the search
process to make it faster by tree structure search methods [9, 10], parallel search
methods [11, 12] or quad-tree partitioning of range blocks [13, 14].

The organization of this paper is as follows. In Section 2 the basic fractal image
encoding method is described together with some later developments, which will be
important in this work. Section 3 introduces the proposed classification algorithm,
and in the last section the results of this method will be analyzed and compared
to that of other fast fractal image encoding schemes.

2. Some fast variations of the basic fractal encoding
algorithm

In this chapter various methods usually applied to speed up the basic algorithm
are described. The contractive transformation mentioned in the introduction is
constructed locally, that is, the range and the domain picture are divided into
disjoint square blocks (“range blocks” and “domain blocks”, respectively) and the
parameters of the transformation are established for each range block. The domain
block that can be mapped into a certain range block with the least error is usually
called the “best matching domain block pair” for the range block. The basic point of
FIC is to find this best matching pair for every range block as fast as it is possible.
The basic algorithm is detailed in [3, 4, 8].

The quad-tree method proposed by Fisher [14] uses the benefits of bigger blocks
without much loss of the reconstruction fidelity. In this scheme, more different
block sizes are used in more consecutive steps. The local search methods are based
on the assumption that the best matching domain block is situated spatially near
the range block at hand, therefore the search for the proper domain block can be
restricted in the vicinity of the range block [5, 6]. This, of course, results in a
considerable speed up of encoding and some damage of the reconstruction fidelity
as a consequence.

The so called “No search” algorithms [7, 8] do not search the domain pool but a
specific domain block is appointed to be the “best matching” one. These methods
produce poorer reconstruction fidelity than other partial search schemes, however,
they are extremely fast, and give rise to the possibility of real time applications of
fractal image encoding.

The exhausting search process can be reduced also by dividing the sets of do-
main and range blocks into subsets with the help of some quantitative property
or parameter. By using this classification, one assumes that the parameter values
of a given range block and its best matching pair are equal or close enough to
each other, so the block and its pair are supposed to be in the same class (subset).
The classification is a part of the pre-process that runs before the search, and in
the search process the domain pool is reduced to the actual class the range block
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belongs to. Wang et al. [17] and Duh et al. [18] used the edge properties of the
blocks to group them into three or four classes and this resulted in a speed up ratio
of 3–4. Fisher [14] divided the domain pool into 72 classes according to certain
combinations of the four quadrants of the block in question. His work proved the
efficiency of the classification schemes: the searching time is reduced to a few sec-
onds without a great loss of reconstruction fidelity. Tong et al. [16] and later Wu et
al. [19] used the so called standard deviation (STD) parameter to classify blocks.
Wu enhanced Tong’s method and achieved a still greater speed up of the encoding
with compression ratio close to 1 bit per pixel.

3. The proposed method

The main purpose of the present work is to find a fast classification based
encoding algorithm to reduce the encoding time to the No Search scheme’s order of
magnitude, while preserving a good reconstruction quality. To do this the choice of
suitable block parameters is essential, which the classification is based on, and no
great effort is made to optimize the developed code by other speed-up techniques.
Similarly to Fisher’s method [14], two different quantities are used to characterize
image blocks. One of these parameters refers to the basic symmetry of image
blocks, and it will be quoted here as the Approximated First Derivative (AFD)
parameter. Consider the image (with size of 256× 256 ) as a function of the form

f(xi, yi) : ([0, 255], [0, 255])→ [0, 255] (3.1)

Though it is a discrete function, it is possible to calculate the first derivative (gradi-
ent vector)∇f = (∂xf, ∂yf) at a certain point, numerically. To do this, however, we
need a numeric formula by means of which the whole image block can be character-
ized by the gradient vector independently from the block’s size. A very simple and
yet proper solution is to approximate the function values {f(xi, yi)| i = 1 . . . B2}
of the block at hand by a linear function of the form

z(x, y) = qxx+ qyy + c, (3.2)

and use the first derivative of z(x, y) as the numeric first derivative of f(xi, yi),
that is ∇f = (qx, qy). Regarding the symmetry of the block, only the direction of
the gradient vector is of interest. Therefore its polar angle

ϕ = arctan
qy
qx

; ϕ ∈
[
−π
2
,
π

2

]
(3.3)

is used to sort the blocks into classes. In a simple manner, it can be said that the
image block at hand roughly shows axial symmetry with respect to the gradient
vector, and the basic point of the classification is that a given range block and its
best matching domain block pair have the same axial symmetry. The AFD based
sorting of blocks alone is not enough to perform a real fast algorithm. That is
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why a second parameter is also needed. This is given as the normalized root mean
square error (<RMSE>) of the fitting of the linear function (3.2). That is

< RMSE >=

√∑B2

i=1 [pi − (qxxi + qyyi + c)]

q
, (3.4)

where pi is the i-th pixel value in the block and q =
√
q2x + q2y is the length of

the approximated gradient vector. (The brackets < · >, here denote the nor-
malization by q.) Similarly to the STD parameter, which measures the deviation
from the block’s mean, the <RMSE> characterizes the deviation of the pixels
from the fitted plane given by (3.2). After the ϕ and <RMSE> parameters are
determined for the block at hand, they are quantized to {ϕk| k = 1, . . . ,K} and
{< RMSE >l | l = 1, . . . , L}. By means of the classification method, the set of
range blocks and the domain pool is divided into separate lists identified by a pair
of parameter values (ϕk, < RMSE >l), where k = 1, . . . ,K and l = 1, . . . , L, so
that altogether there are K · L lists for the range blocks and also K · L lists for
the domain blocks. If a given range block in question turns out to be in the list
(ϕk, < RMSE >l), only the domain blocks contained in the list characterized by
the same parameters should be compared to the range block. However, in many
cases the searched for best matching domain block is in one of the eight neighboring
lists {(ϕk+i, < RMSE >l+j)| i = −1, 0, 1; j = −1, 0, 1} or even in a further neigh-
boring list of (ϕk, < RMSE >l). For the sake of simplicity the control parameter
Nex is introduced and defined as the number of the domain blocks to be exam-
ined for a range block. First the domain block list (ϕk, < RMSE >l) is searched,
and then its neighbors, and then further neighbors, until the number of examined
domain blocks exceeds Nex. When applying this procedure, the choice of K and
L has little effect since the speed of the algorithm and the reconstructed image
quality depend on Nex in the first place. Besides, Fisher’s quad-tree scheme [14]
is used in the present work with block sizes Bn = {16, 8, 4, 2}, and with adaptive
tolerance proposed by Furao and Hasegawa [8]. The spirit of the adaptive method
is also applied for Nex as follows:

(Nex)n+1 = 2(Nex)n (3.5)

since using the greater Nex value for the much more populated domain pool of
smaller blocks is reasonable. The coefficient 2 in relation (3.5) was established
experimentally. Furthermore, the De-Redundancy Method (DRM) and the method
of treating “nearly constant blocks” introduced by Wu et al. [19] are also adopted
here in an unchanged form.

4. Experiments and results

The proposed AFD-<RMSE> classification scheme, Wu’s STD classification
scheme [19] and Furao’s No search algorithm [8] were implemented in .NET devel-
oping environment and the codes were run on a Windows XP, Pentium IV, 3 GHz



On speeding up fractal image compression 125

Figure 1: Original (a) and decoded (b) test images of Lena 256× 256 using the proposed
classification encoding method at compression ratio 1.4 bpp and with reconstruction fi-

delity PSNR=31.60

Figure 2: The PSNR versus the compression ratio (given in bit per pixel) of the proposed
model and the two reference models measured on the Lena image

platform. The values of the control parameter in the AFD-<RMSE> model were
the following:

(Nex)n+1 = {6, 12, 24, 48} . (4.1)

The desired compression ratio was obtained by the proper choice of the tolerance
threshold defined in connection with the quad-tree method. The centers of the
overlapping domain blocks are situated on a square lattice, the lattice constant
of which is B/2 pixels. Thus the total domain pool consists of 4(256/B)2 blocks.
The reconstruction fidelity was measured by the peak signal to noise ratio (PSNR),
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defined as

PSNR = 10 · log10
2552Np∑Np

i=1(p0,i − p1,i)
, (4.2)

where p0,i and p1,i are the pixels in the original and in the reconstructed image
at the same position respectively. Np is the total number of pixels in the image.
The compression ratio is expressed in bit per pixel (bpp). In the proposed scheme,
encoding a B × B size image block in a 256× 256 size picture requires altogether
8 + 2 · log2 256

B + 3 + 1 + 1 bits (see [19]).
The implemented algorithms were compared with the help of the frequently

used grayscale test image of Lena of size 256× 256 (see Figure 1).
Figure 2 gives the comparison of the PSNR and compression results measured on

the Lena picture. It can be seen clearly that in the higher bpp region the proposed
scheme gives considerably better image quality, while for bpp values between 0.8
and 1 the three model produces PSNR results close to each other. At low bpp
values the STD classification gives poorer reconstruction quality than the other
two. The encoding times required to produce various PSNR levels are shown by
Figure 3 The behavior of the proposed and the No Search model are similar in
the sense that with increasing the PSNR level, the encoding time remains almost
constant or does not grow considerably in contrast to the STD classification model
(the encoding time of which grows rapidly with increasing reconstruction fidelity).

Figure 3: The encoding time versus the PSNR of the proposed model and the two
reference models measured on the Lena image

The merit of the present classification algorithm is demonstrated by the fact that
compared to earlier classification schemes a considerable speed up of the encoding
process was achieved without loss of reconstruction fidelity, furthermore, at a higher
bpp region much better image quality can be produced than that of the other



On speeding up fractal image compression 127

fast models. The speed increase obtained by the proposed model is the result
of the number of the domain blocks examined for a range block being reduced
dramatically (by the means of the parameter values given in (4.1) – this number
was 90). Surely, it is possible to speed up the presented scheme by an optimized
code written in a non-visual developing environment but at the same time there
are further possibilities in the development of the classification method yet to be
exploited as well.
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