
6 th International Conference on Applied Informatics
Eger, Hungary, January 27–31, 2004.

Design concepts for data-intensive
applications

Attila Adamkó

Department of Information Technology,
Institute of Informatics, University of Debrecen

e-mail: adamkoa@inf.unideb.hu

Abstract

Designing and maintaining Web applications are both major challenges for
the software industry and researchers. In the early years of Web development,
it was a common practice to approach Web applications by simply “building
the application”, but now the Internet is ubiquitous, and Web applications
are commonplace.
In contrast with the early days of the Web, when most content was served
from static HTML pages, today’s applications are invariably database-backed
and provide mostly dynamic content.

In this paper, we will try to give some basic ideas about Web site devel-
opment, introducing modeling issues and techniques, presenting the general
architecture of Web applications and their different implementations, and the
role of XML.
We will consider the current techniques, implementations, tools, and intro-
duce some (conceptual) problems as well.
Key Words and Phrases: Data-intensive Web applications, data models,
XML, Web modeling techniques, modeling languages, multi-tier applications

1. Introduction

Web applications are growing in demand, complexity and size, thus making it
difficult to systematically design and maintain general Web applications. The Web
is being used for applications that contain significant business logic and have con-
siderable user interface requirements. There are tremendous demands for Web ap-
plications to deliver highly complicated, dynamic and interactive services to users.
The Web was not designed for the deployment of large applications that contain
significant business logic, but several enhancements have been made to support
this functionality of Web applications. A family of technologies such as CGI and
JavaScript and a series of revisions of HTTP have been developed, and innovation

9



10 6 th International Conference on Applied Informatics

has been conducted to enhance the web for its new role as an application plat-
form. Hence it follows that, the Web is now used for deploying applications that
do more than merely deliver information and hypermedia, the purpose for which
it was originally devised.
The background of this paper is a development of a Web Information System (WIS)
and firstly my main purpose was to get an overview about Web Engineering. Since
the nature of WIS differs from the nature of traditional information systems we
need to examine the process of WIS design.

This paper is organized as follows. In section two, the general multi-tier Web
application architecture is presented. Section three shows the principals of the
design process and the main modeling phases. At this point we can now imagine a
general web application, so we can take a look at some currently used methodologies
in section four. In the last section, some considerations are described, influencing
the development process because existing methodologies are not suitable for all
cases. Some ideas are proposed that aims to make web applications easier to
implement and maintain, and assist in the modularization of a large-scale web
application.

2. Architectures for Web Applications

A data-intensive Web application is an Information System, which relies on the
Web as the application infrastructure to perform its functionality. Web applications
are distributed applications, and hence are at least two-tiered. They act as a
special kind of client-server applications, where a large portion of the functionality
is “pushed” back to the server side despite the fact that the Web does not define
what is behind the server.

A Web application is called “data-intensive” if its primary goal is to make large
amounts of data accessible for various kind of users.

Web applications are multidisciplinary (software engineering, database model-
ing techniques, network computing, and effective interface design). They are built
in a constantly changing environment where requirements are unstable and the
user community is wider than before. Web applications handle information from
various sources (text, graphics, video, audio) dealing with structuring, processing,
storing and presenting this information.
A modern web-based application has four layers, as shown in Figure 1:

• a client layer

• a middle tire, which includes:

◦ presentation layer

◦ business logic layer

• a data layer



A. Adamkó: Design concepts for data-intensive applications 11

Figure 1: Typical multi-tier architecture

We need to answer two questions at each tier: what tasks can be performed by
that tier, and the other is how components interact with the neighbourhood tiers.

Web application architectures are built around the well-known model-view-
controller (MVC) pattern. The MVC pattern (shown in Figure 2) is used in web
applications in order to separate business logic and data from presentation logic.

Figure 2: The MVC pattern

2.1. The Client layer

The client layer of a Web application is usually implemented as a web browser
running in the user’s client machine (nowadays the client could be a WAP–enabled
mobile phone or a PDA).

The client browser requests “resources” located in the server, identified inside
the system with a URL. The server is responsible for delivering that resource back
to the requesting client and the main task in the client side is to displaying that
information. Usually this resource comes back to the client as an HTML-formatted
document that can be easily rendered by the browser, but some systems send back
XML documents that can be transformed with style sheets.
The client can perform only a small portion of a task, usually related to user
interactions and sending back user inputs to the server-side. Moreover the client



12 6 th International Conference on Applied Informatics

side cannot receive any messages from its server-side counterpart, and actually
they are not working in a request-response manner at the top level. Thus we can
conclude that the client tier of a web-based application is “thin”.

2.2. Presentation Layer

The presentation layer is responsible for page generation including dynamic
content. The dynamic content typically originates from a database. The other
major task of the presentation layer is to “decode” the information coming back
from the client side (e.g. find the user-entered data and pass that information to
the business logic layer).
Web pages come in two flavours: static and dynamic. Static pages do not perform
any server-side processing before going to the client. Dynamic pages do execute
logic on the server and are often the principal triggers for server-side business logic
processing in the system. In these case the final output text (HTML, WML, . . . ) is
not stored on the server, but it is generated at runtime. This process may involve
translation as well, for instance to translate XML code into HTML using XSLT
style sheets.
The Presentation layer can be built in a number of different tools, e.g. Microsoft
Active Server Pages (ASP) or Java Server Pages (JSP). These tools make it easy to
embed dynamic content inside static HTML page templates, aiming at providing
frequently needed functionalities to developers.

2.3. The Business Logic Layer

The Business Logic layer contains the determinant part of the application logic.
It includes:

• performing all required calculations and validations

• managing workflow

◦ state management: to keep track of application execution

◦ session management: to distinguish among application instances

◦ user identification

◦ service access: to provide application services in a consistent way

• managing all data access for the presentation layer

The Business Logic layer is generally implemented inside an Application server
(like Microsoft Transaction Server, Oracle Application Server, and IBM Web-
Sphere). The Application server generally automates a number of services like
transactions, security, persistence, connection pooling, messaging and name ser-
vices.



A. Adamkó: Design concepts for data-intensive applications 13

2.4. The Data Layer

The data layer is responsible for managing the data. The job of the data layer is
to provide the business logic layer with required data when needed and to store data
when requested. It is generally a relational database, and connections are made by
ODBC, JDBC or other interfaces used by different programming languages.

3. Design Principles

In this section some guiding principles are discussed for a general Web appli-
cation, which is an Information System supporting user interaction through web-
based interfaces. This interaction can be decomposed into three steps:

• Request: the user sends a request to the server, usually via a web page

• Processing: the server receives the request, and performs various actions.
Then the result (usually a new page) is transferred to the client.

• Answer: the user’s browser renders the results of the request.

The architecture of a Web application is a special kind of the server-client model
where the clients are “thin” and the server-side is responsible for managing the
whole functionality of the application. Implementing a Web site managing large
amount of data, the following design principles should be considered:

3.1. Data-intensive Web applications should be based on a
conceptual schema

This conceptual schema describes the information content of data resources and
their semantic relationships regardless of their storage structures. The conceptual
model provides a better understanding of the information content and improves
the development process, usability, maintenance and interoperability of other data
sources. It helps to create a suitable user interface for the application and helps in
the content analysis and query formulation.

In the creation of the conceptual model some well-known data-modeling tech-
niques can be used, for instance the Entity-Relationship (ER) or the extended EER
model, or the Unified Modeling Language (UML) and their extensions. Nowadays
the object-oriented approaches are suggested, using the well-known OO primitives
(classes and relationships) and abstraction mechanisms (aggregation, inheritance).

3.2. Data derivation should be supported

Derivation is the process of extracting data from various sources and producing
data from this information. There are two kinds of derivation:



14 6 th International Conference on Applied Informatics

• External derivation: building the data content as specified in the structural
model. Derivation could be fully automatic if the data source is a single
DBMS and the database schema is automatically derived from the conceptual
schema.

• Internal derivation: producing different viewpoints of the same information.
Derivation queries are applied to the conceptual model and define additional
concepts, whose content is internally derived instead of being stored in the
database.

3.3. Data navigation should be supported

Data navigation means that we focuse on another part of the application content
along navigational path coherent to the conceptual structure of the application.
It includes: Sorting / Filtering / Indexing / Accessing / Browsing.
While the information-base consists of data, which can be accessed by users, navi-
gational model describes the way how the users can access those pieces of informa-
tion. A navigation object plays the role of a view defined on the structural model’s
objects and links between these navigational objects are specified as views on the
relationships of the structural model.

3.4. Flexible page composition and flexible presentation styles
should be supported

Page composition is a fundamental process of assigning data targets specified
during structure modeling to abstract information nodes. Multiple page types per
target allow the developer to represent the information on the same real-world
object in different ways, e.g., for serving the needs of different users.

Presentation styles are responsible to construct the (out)look of the pages. The
presentation specification should be performed at the conceptual level, indepen-
dently of the specific language used to render the information content to enable
multiple mapping from the same page to different realizations (HTML, XHTML,
WML, and XML). The output of actual pages is created from presentation styles,
page types and database targets and should be defined in a formal way. We can
consider the screen as an abstract grid and construct the page from the above
specified informational nodes.

3.5. Personalization could be supported

Personalization makes it possible to present a user – or specific classes of user
– different views of the site (with different navigational commands and/or presen-
tation styles). The main goal of personalization is to satisfy the different demands
of distinct classes of users.
Personalization is essential in electronic commerce for supporting one-to-one mar-
keting, an approach where each user is served by an apparently individual interface.



A. Adamkó: Design concepts for data-intensive applications 15

There are two ways to collect information about users or user-groups, and then cre-
ate the appropriate profile:

• Declarative personalization : static information collection, pre-plant user-
specific information typically gathered with user’s registration forms.

• Procedural personalization : dynamic information collection about usage,
typically monitoring the user’s habits.

These two approaches are strictly independent of each other. Declarative personal-
ization is based on static information and used for automatically construct informa-
tion content and/or optional navigational options relative to user’s interests. Pro-
cedural personalization use business rules – which is a triple event-condition-action
– to express domain-dependent rules. These conditions react on page generation;
if event occurs and condition is true then action will affect this process.

3.6. Design Dimensions

Web applications have five orthogonal design dimensions: structure, composi-
tion, navigation, presentation and personalization.

Each dimension represents a particular view of the application, and the appli-
cation can be obtained by putting the layers together. If something needs to be
changed it only affects a distinct part of the model and the application.

4. Modeling Phases and Methodologies

This section describes the phases of a typical Web Information System de-
sign from A to Z. Several research efforts have resulted in a number of proposed
methodologies for WIS design, mostly model-driven. Different approaches deal
with different models focusing on variant parts of Web applications. Typically,
the methodologies consider the design process in terms of process phases and their
deliverables, often models.

A typical WIS design methodology has the following phases:

• Requirement Analysis: gathering and forming the specification of the user
requirements

• Conceptual Design: constructing the conceptual model for the domain



16 6 th International Conference on Applied Informatics

• Navigation Design: building the navigational model as a navigation view
of the application

• Presentation Design: defining the appearance of the navigational units
and their behaviour during user interaction

• Implementation

There are several Web modeling approaches proposed. Due to the close linkage
of Web application with hypermedia, earlier Web modeling techniques were based
on hypermedia concepts.
Later, it was found that modern software engineering approaches and models could
easily be deployed to model most complex and dynamic Web applications.

We can consider various design models – such as OOHDM, RMM, WebML
and UWE. These methods evolved out of research into hypermedia applications,
tending to have a strong focus on information modeling and the design of effective
navigation structures.

For example, OOHDM (which stands Object-Oriented Hypermedia Design
Method) defines a four step development process. First, the conceptual design, the
problem domain itself is modelled using UML-like graphical notations, providing a
clear picture of the information which will be underpin the web site. In the second
step, navigation design, representing the navigational structure. The third step of
abstract interface design allows the developer to design the interface appearance
and behaviour. And the final step, implementation.

Another modeling approach for designing Web sites is WebML (Web Modeling
Language). WebML applies data oriented aspects using classical notations like the
ER model and UML class diagrams. WebML enables the high-level description
of a Web site under distinct orthogonal dimensions: its data content (structural
model), the pages that compose the hypertext containing the information units
(composition model), the topology of links between pages (navigation model), the
layout and graphics requirements for page rendering (presentation model), and
the customization feature for one-to-one content delivery. The distinct modeling
specifications are written in the platform-independent XML language.

Naturally, there are several other available modeling techniques, each having
their pros and cons, respecting the focus of the main modeling direction.

5. Special Remarks

Although a large variety of tools and modeling technologies are available to
support Web Information System design, many of these heavily concentrating the
conceptual layer, leaving untouched the final phase of the modeling process, the im-
plementation. Accordingly in this section some considerations are taken to advance
the model-driven Web engineering process.

XML technologies are used extensively in the web publishing world to support
both the re-use of content and context-dependent delivery. Content may be repre-
sented as XML documents and selected content and presentation generated through



A. Adamkó: Design concepts for data-intensive applications 17

the use of XSLT templates and transformers. Universal client access is achieved by
generating different XML formats such as XHTML for desktop browsers, or WML
for WAP-enabled phones, and so on.
It could be better to manage information about entities at the conceptual level as
database objects and dynamically generate XML documents to represent particu-
lar context-dependent views on those entities. This approach facilitates changes,
avoids inconsistencies and promotes further forms of modularity and reuse.

On the more technical side, many Web applications are based on dynamic Web
pages generated by scripts like PHP, Microsoft’s Active Server Pages (ASP) or Java
Server Pages (JSP). This introduces a problem into the development process; these
scripts usually lead to a mixture of business logic and design elements within one
software module. This has to be clearly separated into distinct modules to allow
the reuse of both logic and design modules.

This separation between logic and design is an understood thing. However,
the similar situation between business logic and data layer is not the same. The
developer should aim to have little or no validation/business logic in the data layer
since that logic belongs to the business logic layer.
Although, eradicating all business logic from the data tier is not always the best
approach. Not null constraints and foreign key constraints can be considered “busi-
ness rules” which should only be known on the business logic layer. Most would
agree that it is safer or better to include such simple constraints in the database,
and change them, as the business rules evolve.

Continuing this approach, we could take under consideration that databases sys-
tems supports view tables and data manipulation through these views (sometimes
the help with trigger functions). Most of the methodologies are not utilizing this
possibility, or if it is, then only for data retrieval. Another essential remark, a Web
application could provide different interfaces for the Internet and for the Intranet.
In this case the business rules must be implemented in two different modules. How-
ever, if we could find a tiny division between application logic and storage logic
inside the business layer, we could ignore this problem by implementing the storage
logic at the database layer, hence concentrating only the pure application logic in
the business modules.

6. Conclusions

The first part of this paper serves as an introduction to the possibilities of
modeling data-intensive Web applications. It focuses on the architecturally signif-
icant components, the design principles and dimensions and the key parts of the
modeling process. Detailed information can be found in [1], [2], [5] and [7].

The last section covers some special remarks introducing hints for the devel-
opment process and raising several implementing issues. Ongoing researches are
opens up many interesting directions for further investigation and offers space for
detailed analysis and development.



18 6 th International Conference on Applied Informatics

References
[1] Ceri, S. at al..: Design Principles for Data Intensive Websites, SIGMOD record,

Vol. 28, 1999.
[2] Ceri, S., Faternali, P., Bongio, A.: Web Modeling Language (WebML): a modeling

language for designing Web sites, Proc. WWW9, 2000
[3] Conallen, J.: Modeling Web Application Architectures with UML, ACM, Oct.

1999, Vol. 42 No. 10
[4] Faternali, P.: Tools and Approaches for Developing Data-intensive Applications: A

Survey, ACM Computing Survey, Vol. 31, 1999
[5] Schwabe, D., Rossi G.: The Object Oriented Hypermedia Design Method, Comm.

of the ACM, Vol. 38, Aug. 1995
[6] Yogesh, D. at al.: Web Engineering, Journal of Web Engineering, Vol. 1, 2002
[7] Zhao, W., Kearney, D. and Gioiosa G.: Architectures for Web Based Applica-

tions, ???

Postal addresses

Attila Adamkó
Department of Information Technology,
Institute of Informatics,
University of Debrecen
H-4010 Debrecen, PO Box 12
Hungary


