
6 th International Conference on Applied Informatics

Eger, Hungary, January 27–31, 2004.

Generalized Document Data Model for
Integrating Autonomous Applications

Zsolt Hernáth, Zoltán Vincellér

Abstract

A document data model is a semi-structured data model, where any data
are organized into ordered pairs as (R, S). R and S are called raw data, and
schema respectively. Both of those are simple byte streams, but S, if given, is
always an XML document or document fragment. The role of S is to describe
the structuring of R which may occasionally give proper semantics as well.
The advantage of such a data model is the easily structuring, decomposing,
and occasionally restructuring the raw data component for the ever appli-
cation that process it. This is important since any data may be processed
by different applications, e.g. a particular application may be storing the
raw data. Data in a document data model are generalized, if their schema
components describe their raw data components’ structuring for any given
processing case. A generalized document data model is a document data
model where all data are generalized and, in addition, there is a G schema
interpreter which governs data, always with adequate structuring, through
all processing phase including retrieval and storage.

In a generalized document data model principled logical database, docu-
ment data modelled data instances are represented by their schema compo-
nents rather than as ordered pairs. Such a database, beyond the hierarchies
of real data instances, necessarily contains multiple levels of metadata, and
also multiple levels of granularities of metadata and those together with the G
schema interpreter enable heterogeneously structured real data being shared
over different applications and application systems on the WEB. One way
to easily integrate autonomous applications that follow using document data
model may be automatically generating adequate generalized document data
model in build-time from a formal data description, commonly used by the
applications in question. Such a formal language is e.g. EXPRESS that
is used in industrial automation systems and integration for product data
representation and exchange, and defined by ISO 10303-11.

83



84 6 th International Conference on Applied Informatics

Introduction

Applied computer science and informatics by now plays a central role in our
everyday life. The possibility of getting scientific, technical, business and quite
general everyday on-line information accessing the World Wide Web database, to-
gether with having personal computers and Internet access possibilities at reason-
able prices has changed our everyday life. In professional life, beyond information’s
access, processing and integrating information coming from different fields and from
heterogeneous data sources is more important, so that, information processing
needs integrated application systems, rather than standalone applications. Instead
of integrating data and information coming from different data sources in order
to achieve information processing actually needed, information industry vendors
provide for various integrated application and information processing systems. By
now, time is spent over standalone applications, the future and real needs are
integrated application and information processing systems.

There is lots of already existing and efficiently used standalone applications
over the same or different technical fields, and some of them are reasonable to
be brought together with others. To do that, however, needs, among others, a
common data access layer and data model which makes both data sources and
processed results being shared and accessible over applications in question. In case
of even well-architected applications or application systems, establishing both their
common data model and the layer that gives access to data costs a relative large
human and computer development resources since implementing such models needs
bidirectional data transformations between the new common data model and the
data model the applications actually use. Figure 1 below shows two standalone
applications with heterogeneous data sources, Figure 2 and 3 present two versions
of an integrated system consisting of the standalone applications on Figure 1. As
it is seen, the integrated system on Figure 2 does not implement a unified com-
mon shared data model. The only thing that happened is a common I/O layer
established which makes bidirectional mapping, and even

cross mapping between data source models and application data models. The
integrated system on Figure 3 provides for a unified common data model and data
source for the applications and a common unified I/O layer as well.

Integrating standalone applications or integrated application systems over het-
erogeneously stored and structured different data sources and processing results
needs always data conversions mentioned above. The necessary knowledge to per-
form such conversions and data mapping is only partly application specific, yet
applications has to have non-application specific knowledge, and even a significant
part of those is hard coded (e.g. data retrieve and storage), that is, applications
can not be seemingly made independent of data retrieval and storage environment.
In contrast, we call applications autonomous, if they are independent of the all-
time data access environment, including data source structuring, storage model,
and data access engine. To design and implement autonomous applications, it is
necessary that the non-application specific knowledge should not be the part of the
applications. Concerning autonomous applications, one may think that if we have



Zs. Hernáth, Z. Vincellér: Generalized Document Data Model. . . 85

Figure 1

Integrated applications 1

Figure 2



86 6 th International Conference on Applied Informatics

Integrated applications 2

Figure 3

such an application, we can place it in any data environment where necessary data
are present, independently of their all-time structuring. It sounds surprising and
idealistic, but true. The question is where and how the necessary knowledge about
the mapping between differently structured data is implemented. To find adequate
answer to the questions above, we have to investigate applications or integrated
application systems from a quite general perspective. Any applications in general
consist of three steps: optional data retrieval, processing the data, and putting re-
sults out. From this perspective, themselves data may be quite natural media that
can carry information about conversion rules between data source, storage model
and application-specific structuring.

The Document Data Model – DDM

DDM is a data representation which can naturally code information and struc-
turing knowledge (also out of scope of any application logic), and so it is one
possible form favouring our need in achieving autonomous applications. DDM is
a semi-structured data model, where information about structuring is separated
from the real content of data.

Data in DDM are represented in forms of ordered pairs (R, S). R and S are
called raw data and schema, respectively. Both of those are simple byte streams,
but S, if given, is always an XML document or document fragment [3]. The above
organization of semi-structured data has two advantages: the same raw data can be



Zs. Hernáth, Z. Vincellér: Generalized Document Data Model. . . 87

structured in several way, so that there might be a number of pairs where only the
schema components are different, each of them providing for adequate structuring
and occasionally additional semantics the all-time processing phase needs, so that
they can be separately stored with storing only one instance of the raw data; the
other is that the data representation above enables to define structured data types
and primitive abstract operations on data.

For instance, data types and type templates in DDM are represented by pairs
like T(Ø, S), where S is non-empty [4]. To instantiate such types or templates
one should provide for the raw data component for such pairs. If the raw data
component itself is a kind of schema, i.e. an XML document or XML document
fragment, a real type is instantiated.

Pairs like V(R, Ø) where R is non-empty are classless (i.e. void) data. Classless
data, if meaningful, can be converted to any type by providing for a schema compo-
nent. One has to realize, that the schema components are not only for structuring
the raw data. The schema components may describe or identify also methods char-
acteristic for the structured type represented. Changing the schema components
can be considered as a cast operation.

Last, pairs D(R, S), neither R nor S is empty, constitute typed data instances.

Up to now we have focused on the problem of implementing knowledge about
mappings between data-sources/storage-model and application-specific structuring
of data. The schema components of data in DDM, however, offer more general fa-
cilities for data processing. Indeed, in addition to describing structural mappings,
they may contain specifications about data processing phases, the order of those,
or in quite general, they may describe the whole life cycle of data within the appli-
cations. A datum in DDM is called generalized, if its schema component specifies
all non-application-specific knowledge about processing it within an application.

Generalized Document Data Model – GDDM

A generalized document data model is a document data model where all data
are generalized and, in addition, there is a G schema interpreter which governs
data, always with adequate structuring, through all processing phase including re-
trieval and storage.

Using GDDM, knowledge about data processing is carried by data themselves,
and the knowledge is interpreted by the G schema interpreter. To get and interpret
such knowledge, the knowledge carrier media i.e. data are first to be accessed, but
to access the data in question needs knowledge about where and how data is stored.
That seems, however, a non-resolvable recursion, unless we state: in a generalized
document data model principled storage environment or database, data instances



88 6 th International Conference on Applied Informatics

are represented by their schema components rather than as ordered pairs, or with
other words autonomous applications’ data access is access to a schema catalogue.

GDDM based data environments, beyond the hierarchies of real data instances,
necessarily contains multiple levels of metadata, and also multiple levels of gran-
ularities of metadata and those together with the G schema interpreter enable
heterogeneously structured real data being shared over different applications and
application systems on the WEB. The only non-application-specific knowledge that
autonomous applications have to have in GDDM based data environments is where
and how to access the desired schema catalogue.

Any GDDM based standalone application may be considered as an integrated
application system consisting of the application logic, the corresponding GDDM,
and the data source and storage environment including the data provider and
storage manager, which all three may also be considered as autonomous standalone
applications.

GDDM vs. Integrated Application Development
Environments

We are just in a getting started phase of investigating this approach. The ob-
jective is to provide an application independent mechanism of describing product
data throughout their life cycle within applications. Before all we would like to
outline that the model we introduced above is only a possible approach, only one
way to supply developing applications that from the perspective of data access and
data exchange can easily be integrated. Our model, however, does not offer tools
for designing and implementing autonomous applications and GDDM based data
environment, so that can not be considered as Autonomous Application Develop-
ment Environment.

The standalone industrial applications on figure 1 – a FEM-Design and STEP-
based IFC standard on the left hand side, and a CIS/2 standard Consteel applica-
tion on the right hand side – are based on similar philosophy and methodology. The
need of integrating those two industrial CAD applications has arisen two years ago,
and was a real industrial need in a field of architecture in order to bring together
iron-concrete and steel frames to plan and design mixed and complex architectural
items. The two standalone applications have their own data models, data sources,
and beyond the need of importing different kinds and portions of data from each
other, both had the need of employing different computations and results on data
being shared over the integrated system.

Integrating a set of standalone applications with a need of sharing data from
their own data sources and data result sets need always some kind of common data



Zs. Hernáth, Z. Vincellér: Generalized Document Data Model. . . 89

model and an integrated i/o component to access and store data. Any standalone
application or integrated application system has to have a mapping between an
application specific data or object model and a storage representation of the data
in question. This mapping may be concentrated in a separate data access manager
– the case of a well-architected and well-designed integration – or it is spread about
over the application components. In both case, accessing the data is application
specific, so that integrating already existing applications which were not devel-
oped in a similar or the same integrated development environment always needs
and produces the change of a certain amount of existing program codes. The goal
of establishing both standards CIS/2 and IFC intended to minimize the amount
of existing program code to be changed by defining implementation independent
product data exchange format, however, neither of them concerned with establish-
ing self-based integrated application development environment.

The CIMsteel Integration Standards (CIS/2) is a standard for facilitat-
ing an integrated method of sharing and managing information within and be-
tween companies involved in the planning, design, analysis and construction of
steel framed structures. Although the CIS is not a formal STEP (ISO 10303) stan-
dard, they make extensive use of STEP technologies, and it has been intended to
develop the CIS into a full ISO standard (10303-230).

The International Alliance for Interoperability (IAI) was launched in Sep-
tember 1995 with the aim of promoting interoperability in the AEC/FM (Archi-
tectural, Engineering, Construction and Facilities Management) industries through
the use of Industry Foundation Classes (IFC). The IAI intend to realize this vision
by defining, promoting, and publishing IFC specifications for information sharing:
throughout project life cycles, across disciplines, and between technical applica-
tions. The IAI makes use of a number of STEP technologies (particularly EX-
PRESS and EXPRESS-extensions) in the definition of IFC.
EXPRESS is a formal information requirements specification language, and it is
an open industry standard for modelling data [1]. It consists of language elements
that allow an unambiguous data definition and including constraint specifications
on the defined data. It has textual and graphical notation, readable to humans and
fully computer interpretable. The EXPRESS language is implementation indepen-
dent and declarative, making it well suited for the definition of standardized data
models. EXPRESS is used to define schemas (data models) through the definition
of entity types and the allowed relationships among them, entities are collections
of attributes, schemas are combined to form models, and a defined model can be
instantiated to create populations of entity instances. The principle capabilities of
EXPRESS language are provided by the next global scope declarations: data struc-
ture declarations (SCHEMA, ENTITY, TYPE, INTERFACE), constraint declara-
tion (RULE), and miscellaneous declarations (FUNCTION, PROCEDURE), fur-
thermore data types can be classified as: simple, aggregation, named, constructed
and generalized data types.



90 6 th International Conference on Applied Informatics

EXPRESS-C was developed to extend and enhance the capabilities of EXPRESS
by enabling the modelling of both static and dynamic properties of a domain.
EXPRESS-G (a graphical subset of EXPRESS) is a formal graphical notation
for the display of data specifications defined in the EXPRESS language. It was
created as a way to graphically describe the EXPRESS model to make it easier to
understand. It supports only a subset of EXPRESS, the definitions of the entities
and their attributes, and the relationships between them. It does not depict the
constraints and constraint mechanisms provided by EXPRESS.
EXPRESS-M is a mapping definition language being developed to solve the prob-
lem of application protocol inter-operability in the STEP standard.
EXPRESS-X is defined as a formal language for specifying mapping of infor-
mation that is modelled in the EXPRESS language. Generally there is some se-
mantic equivalence but structural differences between the source schema and the
target schema. The correctness of an EXPRESS-X schema will be checked by an
EXPRESS-X compiler.

STEP (STandard for the Exchange of Product data) is targeted at the exchange
of data describing a product between applications. STEP data can be exchanged
and shared across international boundaries. This means that products designed in
one country could be produced anywhere in the world. STEP is intended to deal
with all types of products and all data related to those products. It also forces the
integration of product data. Integration of data and the systems that deal with
those data eliminates or at least severely reduces redundancy. The main objective
of STEP is to provide information sharing technology through neutral mechanisms
that are independent from any particular application, and allow the description of
product data throughout the entire life-cycle of a product.

STEP and IFC (EXPRESS) based development tool-
kits and environments

There are two different kinds of binding implementations: early binding and
late binding. The early binding is a static approach, in which the named compo-
nents of the generated format correspond exactly to the named components of the
data model. The late binding is a fully generic and dynamic approach, where the
named components of the generated format correspond to the meta-model for the
data model.

The NIST STEP Class Library (SCL) is a collection of C++ class libraries
designed to be used as a starting point for building EXPRESS based applica-
tions. The software provides a dictionary of EXPRESS schema information and
functionality representing and manipulation of EXPRESS objects. SCL includes
components for generation of a C++ class representation based on SDAI C++
language binding, or objects based on the SDAI IDL language binding [2].



Zs. Hernáth, Z. Vincellér: Generalized Document Data Model. . . 91

The SBIKIT toolkit is based upon the principles of early binding. Two basic
developments have been prepared in order to facilitate STEP data exchange: A
code generator called Expresso, and a C++ class library for access of data to a
STEP file. Expresso is a stand-alone program which takes the data definition of an
EXPRESS file producing C++ classes for each entity in the EXPRESS file’s data
model. In addition, a special C++ class is created for the data model as such. The
Expresso generated code makes up the basis for the programmer’s own code for a
new application as it mainly consists of the classes he will build upon when writing
the functionality of the program.

The EDM (EXPRESS Data Manager) database management system is a new
technology to improve functionality, performance and quality of the implementa-
tion of data models defined in EXPRESS. It is an instance data storage, manip-
ulation and validation according to the underlying EXPRESS definition, supports
modelling, application development, database management, quality assurance, and
data sharing using Standard Data Access Interface (SDAI). SDAI includes opera-
tions to manipulate instances of the EXPRESS entities in the application model.
EDM has several XML supports, it can:

• generate EXPRESS schemas from XML models

• import XML data into EXPRESS data model

• export XML data from EXPRESS data model

• generate Query schema from XML model

• export Query results in XML.

EDM has an SDAI API interface, it provides a late binding for SDAI with ex-
tensions for database functionality, also has an EXPRESS compiler, it is used to
instantiate a dictionary model from an EXPRESS schema. The EDM dictionary
model can store any legal EXPRESS schema without loss of information.

The ECCO toolkit is an integrated development environment, which allows
to check the syntactic and semantic correctness o fan EXPRESS data model and
to translate the specification to an executable application or library that can be
linked to an existing application.

Autonomous Application Development
Environment

The architecture of an autonomous application that uses GDDM is very similar
to that of a well-architected and well-designed standalone application or integrated
application system. The main difference is that using GDDM data themselves



92 6 th International Conference on Applied Informatics

carry all necessary knowledge about structuring and processing phases, so the data
access layer is independent of both storage and application data representation.
Implementing autonomous applications and their GDDM is, however, very hard
task, if necessary data types and possible processing phases of data instances have
to be coded by hand using XML. Instead of following a today’s fashionable and
usual way, i.e., establishing a GDDM based integrated application environment
with providing for a GDDM oriented new programming environment, we believe
that traditional programming languages and their development environment ex-
tended by a computer aided implementation of a desired GDDM will result in
much more satisfaction for the community of professional application developers.

Autonomous Application Development
Environment

Figure 4: Autonomous Application Development Environment

In order to supply a computer aided implementation of a desired GDDM map-
ped to some desired program development environment, the following abstract
autonomous application development environment is proposed (Figure 4):

• A high-level (EXPRESS-like) description language called SMDL (Schema
Modelling Description Language) that is appropriate for describing data types
and data populations and their life cycles within the application to be devel-
oped.

• A high-level macro language called SMML (Schema Modelling Macro Lan-
guage) that is appropriate for describing any SDML sourced construction on
a desired programming language and possible macro libraries for traditional
programming languages.



Zs. Hernáth, Z. Vincellér: Generalized Document Data Model. . . 93

• The SMDL parser that translates an SMDL sourced application schema into
an SMML schema description.

• The SMMLmacro generator that from SMML schema descriptions generates
source program skeletons together with the desired GDDM according to the
all-time specified macro library.

References
[1] Industrial automation systems and integration – Product data representation and

exchange – Part 11: Description methods: The EXPRESS language reference manual
Reference Number ISO 10303-11:1994, ISO, Switzerland 1994.

[2] Industrial automation systems and integration – Product data representation and
exchange – Part 22: Implementation methods: Standard Data Access Interface spec-
ification, Reference Number ISO/DIS 10303-22, ISO, Switzerland 1993.

[3] Extensible Markup Language (XML) 1.0 (Third Edition)
W3C Proposed Edited Recommendation 30 October 2003
http://www.w3.org/TR/2003/PER-xml-20031030

[4] Data on the WEB – From Relations to Semistructured Data and XML, Serge Abite-
boul, Peter Buneman, Dan Suciu
ISBN 1-55860-622-X, San Francisco 2000.


