
6 th International Conference on Applied Informatics
Eger, Hungary, January 27–31, 2004.

Database systems benchmarking

András Gábor

University of Debrecen, Institute of Informatics,
Department of Information Technology

e-mail: gabora@ inf.unideb.hu

Abstract

Database systems play a fundamental role in information technology ever
since the early days. Different models were in use before the relational data-
base model emerged and took the leading role. Today all business and most
non-business applications use RDBMS software products, which became just
as important as the hardware or the operating system.

The available RDBMS software products vary in many ways. They dif-
fer in prices, performance, manageability, scalability, functional capabilities,
etc. Choosing the appropriate one for an information system can be a hard
task. Vendors are trying to convince us about the superiority of their prod-
uct. Therefore measurements are required to allow for an honest comparison.
The subjects of traditional measurements have been performance, price and
sometimes stability. In this paper I will give an overview of the standard
traditional benchmarks that have been used.
These traditional benchmarks measure the relational capabilities of the data-
bases. As today most products perform the most basic relational features
reliably and fast enough to fulfil most application needs, the database devel-
opment efforts have shifted towards providing full-featured DBMSs.
There is a need for benchmarking the new features, because their utilization
saves development time, increases maintainability and evolvability and some-
times performance as well. In the second part of the paper I will enumerate
such features and propose a benchmark approach to rate them.

1. Benchmark properties

Definition: A benchmark is a means of measuring a product or a system
against a set of conditions. A benchmark has to specify:

- the target properties of the system under test (SUT) that the benchmark mea-
sures,

- the result metrics and methods of the measurements,

73

74 6 th International Conference on Applied Informatics

- the operations and their workload used in the benchmark,

- the environment conditions in which the benchmark is run.

Therefore a database benchmark is a benchmark measuring a database system.
The Benchmark Handbook [Gray93] points out that a benchmark should also be
scalable and portable, which is not always the case in the real world.
In order to get interpretable results, the operations and the environment model a
typical scenario in an application domain. Hence, the results are relevant to that
domain, and hardly applicable (if at all) for other purposes. This way we have to
talk about domain benchmarks.

Categorizations

We can differentiate benchmarks based on their application domain, the type
of the underlying DBMS and the level of standardization.
The most relevant domains are:

- OLTP (On-Line Transaction Processing)

- DSS (Decision Support System)

- General SQL

- Full text retrieval

- Geographical data

- Engineering data, CAD/CAM

- Web benchmarks

Based on the database type:

- Relational

- Object-oriented

Another categorization aspect is to consider how standard a benchmark is. We can
talk about standard, semi-standard and custom benchmarks.

Portions of the benchmarks are run according to standardized rules. But most
of the times these standard benchmarks don’t fit in our application model. So
instead we can either use a modified version of these benchmarks or design and
implement a totally independent, custom benchmark. While standard benchmarks
are easy to implement because they are already defined, the results of these might
be irrelevant to our actual application scenario. On the other hand it can be hard
and expensive to design a custom benchmark.
In this article we consider only standard benchmarks. Custom benchmarking is
discussed in [Gray93] Chapter 11 - Doing Your Own Benchmark.

A. Gábor: Database systems benchmarking 75

A third categorization perspective is whether a benchmark is vendor-indepen-
dent or vendor- specific. Benchmarks in the latter category can be subcategorized
based on the vendor. These benchmarks are tightly coupled to the vendor’s prod-
ucts and are non-portable to other systems.

2. Traditional benchmarks

The first standard benchmarks appeared in the 1980’s. In 1984 an effort was
made by Jim Gray to create an agreement on a standard performance benchmarks.
The article [ANON] defined three major tests. By that time OLTP was the most
important application domain. As a result one of the three tests - DebitCredit -
was and OLTP benchmark. It simulated transactions in an accounting system with
3 major files (branches, tellers, accounts) and a history file. The other two tests
were called Sort (100 million records disk sort) and Scan (Mini batch transactions
of access and modify sequentially).

The benchmark rated the tested system according to performance, price, and
price/performance. The elapsed time gives the performance metric in TPS, the
number of processed transactions per minute. The cost is the so-called five-year
capital exclusive of communications lines, terminals, development and operations.
The price/performance is the quotient of the previous two.
Although DebitCredit was very simple and non-scalable, it was based on real-world
application.

The other early benchmark was developed in 1983 at the University of Wiscon-
sin. It is referred to as the Wisconsin benchmark. It is a systematic benchmark
on a synthetic data. It also has four files (tables), but has more transactions that
aren’t specific to any application domain. Thus this benchmark measures the over-
all performance of the database. The performance metric is the elapsed time.

Originally the benchmark was not scalable but later version resolved this prob-
lem. The description of the benchmark can be found in [Gray93] Chapter 4 - The
Wisconsin Benchmark: Past, Present, and Future.

Transaction Processing Performance Council1

The database vendors started using benchmarks and publishing their results.
But these results were unchecked and unreliable. Therefore 8 leading companies
founded the Transaction Processing Performance Council (TPC) in 1988. The
organization today has around 30 companies that include database vendors and
hardware suppliers as well.

The organization has defined many benchmarks that have established a basis
for more honest and reliable comparison of database systems as every benchmark.
The definitions of the benchmarks are available to anyone freely [TPC] but only

1TPC and its benchmarks are trademarks of TPC. For the precise definition of the benchmarks
referred to in this paper please visit http://www.tpc.org/

76 6 th International Conference on Applied Informatics

audited hence validated results can be published.
Table 1 lists the TPC benchmarks.

Benchmark Application Validity Latest Performance
name domain version metric(s)
TPC-A OLTP 1989 Nov − 2.0 tpsA

1995 Jun
TPC-B OLTP 1990 Aug − 2.0 tpsB

1995 Jun
TPC-C OLTP 1992 July − 02.máj tpmC
TPC-D DSS 1995 Apr − 01.febr QppD@Size,

1999 Jun
QthD@Size,
QphD@Size

TPC-H DSS (ad hoc) 1999 Feb − 2.1.0 QphH@Size
TPC-R DSS (reporting) 1999 Feb − 2.1.0 QphR@Size
TPC-W Web applications 1999 Dec − 08.jan WIPS, WIPSb,

WIPSo

Table 1 – List of TPC benchmarks

A brief summary of the above benchmarks follows here, the full specifications
and the latest results are available at TPC’s website http://www.tpc.org.

The first benchmarks TPC-A and TPC-B were both simple OLTP benchmarks
based on the concepts of the DebitCredit. The main difference between them is
while TPC-A results are measured at the terminal, TPC-B is run in batch mode on
the server side omitting the network traffic and performing a stress test. By today
both of these have become obsolete and only the TPC-C remained active evolving
through many versions.

The TPC-C is an enhancement over the TPC-A and works with a more complex
database model. It simulates computer environment of an order-entry application
where a population of users is running transactions against the database. A user
randomly chooses one out of five different transactions according to the specified
distribution. User actions are simulated by specifying a mean keying time (entering
data) before submitting a transaction and think time (evaluating results) after the
results arrive and the user restarts its cycle.

The metrics of the benchmark are tpmC (transactions per minute TPC-C) and
$/tpmC, where the price involves the hardware, software and maintanance costs

All published TPC benchmarks must adhere to a specified format. A Full
Disclosure Report includes relevant information on the computer environment of
the test and the price calculations. By studying the environment and the database
settings we can find best practices for tuning the databases for the benchmark’s
domain.
As computational power increased and data storage became cheap Decision Support
Systems (DSS) nowadays play a major role among database applications. These
applications are about issuing complex queries against databases.

A. Gábor: Database systems benchmarking 77

The first DSS TPC benchmark was TPC-D. During the benchmark complex
queries are run and infrequent updates are also required. It can be run in either
sequentially to measure the Power (in QppD@Size) or concurrently to measure
the Throughput (in QthD@Size). The combined metric QphD@Size is called the
Composite Query-Per-Hour Rating. The @Size part of the metric emphasizes that
only results achieved at the same database size are meaningfully comparable. This
size is referred to as the Scale Factor, which can be one of the following in GB: 1,
10, 30, 100, 300, 1000, 3000, 10000.
It has been soon realized that better results can be achieved if we exploit the fact
that all possible queries are known in advance. Better optimizer strategies, better
data placement will produce very good results that don’t reflect the DBMS’s ca-
pabilities to answer ad hoc queries.
This realization led to the split of the TPC-D benchmark into: TPC-H where no
query-based optimizations are allowed to measure ad hoc query processing; and
into TPC-R which measures the reporting capabilities as every optimization is al-
lowed provided that it is stated in the full disclosure report.

Other benchmarks

TPC’s benchmarks are reported most often, but there are also some other widely
used tests, mainly for private measurements.
The ANSI SQL Standard Scalable and Portable Benchmark – AS3AP – is a test
that measures general performance. The benchmark uses a data mode scalable in
size and requires set of fixed queries and transactions to be run. The main metric
is called the equal database size , which is the largest database size on which the
test set was able to complete in under 12 hours. When we compare two results, we
divide the two results and get the equal database ratio.
The Set Query benchmark as its name implies measures the query processing power
of a DBMS. The queries of the test are from three application domains: Document
Search, Direct Marketing, DSS and Management Reporting. The elapsed time of
each query is measured separately to identify certain weaknesses of the system. In
order to compare systems a combine metric is used called Dollar Price per Query
Per Second ($PRICE/QPS). This is a price/performance metric similar to TPC’s
approach.
The definition of the AS3AP and the Set Query is available in [Gray93].

Benchmark tools

As previously stated benchmarks are available as specifications, while the imple-
mentation is up to us. This is usually very time and resource consuming procedure
that we cannot afford. Fortunately there are tools available to run benchmarks.

We picked out one commercial tool, called Quest Benchmark FactoryTM by the
Quest Software. Evaluation versions are available from http://www.quest.com/
.

78 6 th International Conference on Applied Informatics

This tool

- can be used with different vendors (basically any that has ODBC support)

- implements many standard benchmarks including: TPC-C, Set Query, Wiscon-
sin, AS3AP

- can be used to design and run custom benchmarks

There are also open source tools:

- Open Source Database Benchmark available at http://osdb.sourceforge.net/
. Available only for some database products at the moment.

- OpenLink ODBC-Bench, JDBC-Bench available from
http://www.openlinksw.com/. We can run TPC-A and TPC-C like tests.

According to our knowledge the Quest tool is widely used in the industry. We
also have good experiences.

Benchmark values

The appearance and wide usage of benchmarks was beneficial for the industry as
it established accepted bases for comparing database systems and the competition
for the best result urged DBMS vendors to improve their products.

But be careful when interpreting results. Keep in mind that these are achieved
in pretuned conditions and don’t necessarily reflect the average processing capabil-
ities. Misleading interpretations used for marketing can undermine the importance
of benchmarks and the faith in their reliability.

3. Features benchmark proposal

The available current benchmarks focus on performance only. Development
issues and maintenance costs are set aside. This is the case in spite of the fact
that DBMS developments today have shifted to increasing added functionality in
DBMS products. Therefore we propose to define benchmarks that also take the
implementation aspect into account.

Some new features are common across several products and a portion of these
is even standardized by the SQL:1999 standard [SQL99]. However developers don’t
seem to use and accept these. The reason for this might be lack of knowledge and
mistrust in the achievable application benefits. Reported benchmark results could
dissolve doubt and show application scenario case studies propagating the use of
better techniques.

A. Gábor: Database systems benchmarking 79

Overview

A features benchmark includes:

- A modeled application scenario where the features could be used beneficially.

- An implementation using old techniques.

- Multiple implementations that utilize the sets of tested features.

- Technology scores for each feature in the implementations. The more useful a
feature the more score is given. The value should be a real number greater
than 1.

- Transactions and their run specifications.

When we run a test in a system, we choose an implementation. We run the
transactions and measure the performance. Then we combine the performance and
the technology scores into the Adjusted Performance Result :

APR = pm · ∏
f∈F

TSf ,

where

- pm is the performance measured (in any metric relevant to the scenario).

- F is bag2 of features in the implementation.

- TSf is the technology score (real number) i.e. the impact of feature f.

However it is not yet clear whether simple multiplication is the best operation
when multiple features are used.

Features

Lets look at some of the available features:

1. Collection types. Nested relational models have been know in theory since
1983 [NFNF]. By that time DBMSs were focusing on stability. However
implementations have been available in some DBMSs for a while (Oracle,
Informix) and other products might include them soon. Collection attributes
allow us to avoid redundancy without normalization.

2. Object types (User-defined types), object tables. By using object types, meth-
ods and inheritance we can easily model the real world entities. It is easier to
extend the model later. Foreign keys can also be replaced by object references
if needed.

2bag: a set where an element can occur multiple times

80 6 th International Conference on Applied Informatics

3. Virtual Private Database. A virtual private table is a table that contains a
subset of rows in a larger table. For each user/group we assign a criteria that
specifies which rows belong to their version of the table. The DBMS translates
SQL statements issued on a virtual table into statements that contain the
specified criteria. This way the protection mechanism is transparent to the
user, even if he selects, deletes, etc. all rows only the rows that are accessible
to him are affected. By using this technique we can use one single table to
store all similar corporate data. We don’t have to collect all data into one
large table when we want to analyze aggregated data as it is always stored so
while applications don’t have to be aware of this. However handling a large
table with access criterions instead of a few smaller ones with access rights
probably result in a slightly poorer performance.

4. Domain indexes. Some applications require storage of metadata information
along with data in order to make data access fast and easy. An example of
this is when storing documents and along with them we store their contained
words referencing the container documents. Normally the “word index” must
be extracted and maintained by us. By using domain indexes we can separate
the indexing routines into a reusable code. The application doesn’t anymore
have to maintain the index structure itself still it can exploit it in queries by
including special operators in the search conditions.

5. Table functions. Table functions allow us to generate rows programmatically
for queries used in SQL statements. These rows are totally dynamic and
temporary. An example of using table functions is when we want to join a
table to some temporary data. Traditionally we would store the temporary
data in a temporary table for the duration of the join, while using table
functions allow us to retrieving the temporary data on the fly.

6. Aggregate clauses and analytical functions. By using advanced aggregate
clauses we can declaratively program complex aggregate queries. In analytical
queries we can define sets of rows as environments of the actual row in the
result set, then on these sets the analytical functions perform some aggregate
computation and the result is assigned to the actual row. Sometimes it is
possible to write an equivalent query without these features, but it usually is
much more complex, harder to understand and modify plus it performs much
worse. In other cases there is no equivalent query but we can perform the
computation procedurally. These solutions can be compared.

There are many other features not listed. However the features in the above
list demonstrate that there are good solutions that should be adopted by developers.

Future work

We have to fully specify benchmarks for most relevant features. Based on the
experiences we can assign appropriate technology scores.

A. Gábor: Database systems benchmarking 81

A comparison formula or method is needed that includes a custom weight factor
representing the importance of performance proportional to the used technology.
Find scenarios where new features are inappropriate to identify their limitations.

References
[SQL99] Jim Melton, Advanced SQL: 1999 - Understanding Object-Relational and Other

Advanced Features, Morgan Kaufmann, 2003
[Gray93] Jim Gray ed., The Benchmark Handbook, Morgan Kaufmann Publishers Inc.,

1993, http://www.benchmarkresources.com
[ANON] Anon et.al. (Jim Gray really), A Measure of Transaction Processing Power;

Datamation, 1985, p. 112., also Tandem Technical Report TR 85.2.
[NFNF] Arisawa H., Moriya K., Miura T.: Operations and the Properties On Non-First-

Normal-Form Relational Databases, Proceedings of 9th International Conference On
Very Large Data Bases. October 1983, pp 197-204.

[Book02] Gábor András, Juhász István: PL/SQL-programozás. Alkalmazásfejlesztés
ORACLE9i-ben, Panem, 2002, Budapest.
Title in English: PL/SQL-programming. Application Development in ORACLE9i

[Book03] Gábor András, Gunda Lénárd, Juhász István, Kollár Lajos, Mohai Gábor,
Vágner Anikó: Az Oracle és a WEB. Haladó Oracle9i ismeretek, Panem, 2003, Bu-
dapest
Title in English: Oracle and the WEB. Advanced Oracle9i

[ORA9] Oracle9i Application Developer’s Guide - Object-Relational Features
[TPC] The Transaction Processing Performance Council, http://www.tpc.org
[QUEST] Quest Software - Benchmark Factory, http://www.quest.com,

http://www.benchmarkfactory.com
[OSDB] The Open Source Database Benchmark, http://osdb.sourceforge.net
[OpenL] Openlink ODBC Bench, JDBC Bench, http://www.openlinksw.com

