
6 th International Conference on Applied Informatics
Eger, Hungary, January 27–31, 2004.

On the correctness of object classes

Péter Szlávi

Informatics Methodology Group,
University Eötvös Loránd

e-mail: szlavi@ludens.elte.hu

Abstract

The cardinal purpose of teaching programming is to demonstrate a
method of developing correct programs. Reliability and correctness are es-
pecially important in cases of programs that are intended for multiple reuse.
The most characteristic examples of such program-tools are the ones belong-
ing to data types (or data type classes). The method we outline for program
development assists in producing correct programs with mathematical for-
malism.

The main point of this method is that we declare statements that refer
to the examination of the abstract type class’s operations formulated with
algorism. Since there are well-known methods for proving these statements,
we do not have to deal with it in this paper.

We are going to apply a single example throughout the article. The the-
orems we need to support our steps are to be declared, but our methods
generally do not require elaboration of their proof.
Categories and Subject Descriptors: D.1.4 [Programming Techniques]:
Sequential Programming; D.1.5 [Programming Techniques]: Object-Oriented
Programming; D.2.1 [Software Engineering]: Requirements/ Specification;
D.2.4 [Software Engineering]: Software/Program Verification – correctness
proof; D.2.10 [Software Engineering]: Design – methodology; D.2.11 [Software
Engineering]: Software Architectures – data abstraction
Key Words and Phrases: Program methodology, data abstraction, data
type class, proof of program correctness

1. The method from a bird’s eye view

The data type class we want to produce is to be called target type. We describe
this data type class with algebraic formalism: the parameters used to define a
certain type, the operations used to manage the data of this type, as well as the
way they work and what they yield. In short: we define the abstract syntax and
semantics of the operations belonging to this type. Semantics is characterized

475

476 6 th International Conference on Applied Informatics

by an algebraic system, which is the abstract specification of the target type
(SPEC(ax)

a).
Problem 1: How can the completeness or consistency of an algebraic

system be proved?
We choose a suitable type on which we will build the one we study. This type

is specified algebraically too. Let us call it import type. This way, we get to the
import specification. (SPEC(ax)

imp)
In the next step we formulate the representation of the target type with the as-

sistance of the import type. Here we define a mapping between the representation
and the range of the target type. (ϕ)

Problem 2: What property do we expect the mapping to have?
The equations set up in the abstract specification have to be true with the

representation as well. By this, we have given the first concrete specification
of type. (SPEC(ax)

c)
Using the algebraic description, we formulate expectations for each operation:

we give their pre- and post-conditions. This way, we get to the second abstract
specification (SPEC(pp)

a where pp refers to the pre- and post-condition.)
Problem 3: What guarantees that the pre- and post-conditions are in

harmony with axioms?
We enumerate the operations, and in a “standard” algorithmic language we

prepare the algorithms of the procedures and functions realizing them.1 Now, we
have achieved our purpose. The final realization of the type is done. We complete
our procedures and functions with the pre- and post-conditions that are based on
their own abstract pairs. This is the second concrete specification. (SPEC(pp)

c)
Problem 4: Do the bodies of the procedures and functions meet the

expectations? Can it be proved that when the precondition
realizes, the post-condition is still true after the transfor
mation?

On figure 1 below we summarize the problems to be solved.

The coloured arrows illustrate the way we chose to follow to present the method.

1The word “standard” refers to a supposition that the semantics of the instructions is unam-
biguous and well known; therefore we do not specify them.

P. Szlávi: On the correctness of object classes 477

2. Indispensable concepts

As is seen, we gradually achieve our purpose, forming mapped specification into
specification.2 This mapping has to guarantee that the mapped type is equal to
the original one. Actually, the formal part of our investigation is focussed exactly
on this.

Apart from the temporary conditions of the specifications, we can declare that
two specifications play leading roles in our deduction: the abstract specification
and concrete (final) one. Because of the formal deduction, we add two further
specifications: one belonging to the parameter and one to the import. The figure
below illustrates the relations of these specifications.

We write exp and bod to denote abstract (original) and concrete (final) spec-
ification, respectively. The par specification formulates the expectations of the
parameter, while the imp, as the basis of the representation, denotes the require-
ment of the import. The mappings e, i, eb and ib are morphisms, that is, they hold
all the properties of their own operations, essentially. 3

In order to avoid repeated noting, we mention only the “extras” of the current
specification. For example, some characteristics that appear in the par do not
reappear formally in the exp. This practice yields a great profit in the case of
the bod, because there we imply everything described about imp and exp without
rewriting them.

Consequently, the type is defined by a so-called double specification. Hence-
forth, this concept requires a formal approach, which is provided below.

This specification of the type class is a double specification, which contains

• an abstract specification: SPECa and

• a concrete specification: SPECc.

In details:

2The definition of the specification can be found in [1/11 pp.,2/24 pp.].
3The precise definition of the morphism can be read in [1/27 pp., 2/25,32 pp.].

478 6 th International Conference on Applied Informatics

SPECa = (A, F, Ea)
A = {A0, A1, . . . , An }
F = {f0 → A0, . . . , fm:Aj. . .Ak →Al};

SPECc = (C, G, Ec)
C = {C0, C1, . . . , Cn}
G = {g0 → C0, . . . , gm:Cj . . . Ck →Cl}

where A and C include the sets composing the two specifications; while F and
G are the corresponding operation sets. We paired the operations of the types: the
pair of f 0 in A is g0 in C etc. We assume that the members of the pairs have
identical signature.

Below we define the “harmony,” the most important feature characterizing the
nexus of these specifications.
Definition.

Let da = (A, F, Ea) be an abstract specification, and
dc = (C, G, Ec) be a concrete specification with common signature.

Let ϕ: C→ A be a morphism.

If
(1) C is a representation of A with morphism ϕ.
(2) (∀fi ∈ F)(c ∈ C ∧ ϕ(c) ∈ A ∧ fi(ϕ(c)) is definite ⇒ gi(c) is definite too.
(3) (∀fi ∈ F)(c ∈ C ∧ c′ = gi(c) ∧ c′ ∈ C ∧ ϕ(c) ∈ A ∧ ϕ(c′) ∈ A ⇒
fi(ϕ(c)) = ϕ(gi(c)).
then dc is correct with respect to da.
A remark to the (1): The morphism ϕ : C → A is given. The C is the repre-

sentation of A if ∀a ∈ A : ∃c ∈ C : a = ϕ(c).
Theorem (correct representation).
Given an algebraic specification SPECa = (Σa,Ea) of an abstract data type
da=(A,F), a specification SPECc = (Σc,Ec) of a concrete data type dc=(C,G), and
a morphism ϕ : C → A. Let be Fc ⊂ F a set of constructors. If for ∀fc ∈ Fc holds
that

a∈ A ∧ fc(a)∈ A ∧ gc(c)∈ C∧ a= ϕ(c)

and

∀c∈ C ∧ ∀fc ∈ Fc : fcϕ(c))∈ ϕ(gc(c)),

then
C is a representation of A.

The next theorem in the focus of our method gives controllable and sufficient
conditions for the correctness of the concrete specification, with respect to the
abstract one. It contains a few concepts that are worth mentioning:

P. Szlávi: On the correctness of object classes 479

• type invariant – an assertion that holds for every element in the base set of
a type (Ia, Ic);

• precondition – it is a predicate that describes the states in which the program
may be started (pref , preg);

• post-condition – describes the states after program termination
(postf , postg).

Theorem(correctness of the concrete specification) (ThCCS)
Given

da = (A, F, Ea); {pref i(a)} a’ = fi(a) {postf i(a,a’)}∈Ea, fi ∈F,
i=0,. . . ,m; and
dc = (C, G, Ec); Qgi∈Ec, gi∈G, i=0,. . . ,m; here procedure Qgi

for calculating the value of the operation gi.
Assume da and dc are specifications with respect to common signature.

A = { a | Ia(a)},
{"true"} a = f0 {postf 0(a)},
{pref i(a)} a’ = fi(a) {postf i(a,a’)}, i=1,. . . ,m;
C = { c | Ic(c)},
procedure g0 begin Q0 end;
procedure gi begin Qi end; i=1,. . . ,m;
and
ϕ : C → A be a morphism.

If the following theories are verified:
(i) (∀c∈C)(Ic(c) ⇒ Ia(ϕ(c));
(ii) {"true"} Q0 {postf 0(ϕ(c)) ∧ Ic(c)};
(iii) (∀f∈F) : {pref i(ϕ(c)) ∧ Ic(c)} Qi {postf i(ϕ(c),ϕ(c’)) ∧ Ic(c’)};

where (ii) and (iii) are theories of total correctness,
then the concrete specification dc is correct with respect to the abstract speci-

fication da.

3. Observing the method

The particular type the specification of which we examine is the well-known
bag. The bag is the generalization of the set. In the bag, unlike in the set, more
than one piece of the item can be collected.

The specification of the type class bag could be as follows:

480 6 th International Conference on Applied Informatics

The bag is a composite data structure that collects items of any (identical) type,
but its cardinality is finite. So it has some parameters:
1. the element type – data
2. the maximum number of the members – n: natbool

The first line of the specification shows this.
It is necessary to specify what we expect from the type of the parameters,

since they meddle in the export and import specifications, as you have seen on
fig. 2. The part parameters define the par parameter specification. Since we have
previously given the formal specification of the type natbool, we do not write it
here. Furthermore, our expectation is that there is an operation “equal” of the
type data with usual properties (data1=symmetry, data2=transitivity). We give
the abstract syntax of the data operations after oprs and the axioms after eqns.

The purpose of the part export is to clarify what we demand of the type class
(the bag). This, we can say, is the abstract notion of the bag, since it has no
connection with the later representation of the type. Also, it is a type specification
with similar structure (as far as the parts sort, oprs and eqns are concerned).

The algebraic system needs to be complete and consistent, which can be
achieved easily, as the next proposition states:
Proposition (guarantee of the completeness and consistency of the axiom system)
(PrGCC)

For each object of the type, created by constructors (or multiple calling of
constructors), we give the values of any other (non-constructor) operators.

In such a way, the axioms are built. Now we have received the answer to
problem 1 in the previous chapter, but still, the completeness and consistency
cannot be proven theoretically. The numerous practical cases, however, encourage
us to believe in the correctness of the proposition above.

Similarly, we define the bag : the operators bempty and binsert are constructors
by which any bag objects can be generated. Therefore, we group any other opera-

P. Szlávi: On the correctness of object classes 481

tors around them. (bempty → bag1-bag3, binsert→ bag4-bag7) Some notes about
each axiom are as follows:

• ad bag1: the operator bempty does not change the empty bag

• ad bag2: the number (i.e. the multiplicity) of the items in the empty bag is 0

• ad bag3: the size of the empty bag is 0

• ad bag4: if the data arguments of the operators bdelete and binsert are not
identical, the order of the operators is invertible; otherwise the operator-pair
“binsert and then bdelete” has no effect on the bag

• ad bag5: the operator binsert increases the number of the given item by one

• ad bag6: the operator binsert increases the size of the bag by one as well

• ad bag7: it is impossible to exceed the maximum size of the bag by putting
more items in it; if we do try it, the bag gets into an undefined condition.

Now we trace the representation of the bag back to the vector.
In the import specification we introduce the vector on which the representation

and the implementation of the bag will be based, by describing the abstract syntax
and semantics of its operations. In order to formulate the vector, we use the data
parameter type as its index type. The elements of the vector will be the numbers
from natbool. It is clear that member e of the bag is the index of the vector, and
its multiplicity is an item of the vector, as well.

Axiom vect1 expresses that the vector is formed with well-defined value (zerus).

482 6 th International Conference on Applied Informatics

The body is the fourth specification. Its role is to connect the concrete repre-
sentation with the abstract target type, i.e. the bag. This connection is set up by
the so-called representation function ϕ.

First, we give the syntax of this mapping. From this, it is clear that the repre-
sentation of the bag consists of the pair of a vector and a number.

The formalism can be simplified by applying morphism between the specifica-
tions. We change the names of the three frequently used operations of natbool,
precisely zerus, succ and pred, to their traditional equivalent.

According to the meaning of the morphism diagram, everything we have de-
fined so far, will map here. This morphism, however, is a mapping that includes
representation too. This is why we have to specify the representation here as well.

Referring to the constructivity of the type bag, we give the ϕ–images of the two
constructors, bempty and binsert, which can generate all the members of the type
set.

The bod1 asserts that the operation bempty produces a value-pair of an empty
vector and a number 0 indicating the size of the bag, as the representation of
bag : bemptya=ϕ(bemptyc). The bod2 states that an extra element put into the
bag, increases the multiplicity of the suitable member of the vector and the size
of the bag : binserta(ϕ(c),e)=ϕ(binsertc(c,e)). In the formulae, the subscripts are
used to indicate where the operation belongs: opa to the abstract specification and
opc to the concrete one. The morphism between the specification SPECexp and
SPECbody is so-called containning and representation-morphism [2/49], so now we
do not need other axioms in the body, we can omit them.

We have reached the answer to problem 2. What is ϕ like?
The properties of the mapping ϕ (Prϕ)

1. every concrete object should have an image in the ϕ-range,

2. it should be so-called “operation-preserving” (i.e. ϕ(opc(x,y,. . .))=
opa(ϕ(x),ϕ(y),..) for all x, y, . . . in C, and for all opa and opc defined on A
and C, respectively), and

3. every abstract object should have an “ancestor” in the ϕ-domain.

Properties 1 and 2 are together called “morphic,” which, combined with the
third one, satisfy the expectations of the representation mapping,

P. Szlávi: On the correctness of object classes 483

In part body each concrete operator, including ϕ, is precisely defined. But we
intend to describe them with their algorithms, as well. We would like to write a
program, but there it is easy to make mistakes.

In the following, we are going to take steps towards proving correctness.
Roughly, it means the following:

I. to give the explicit definition of the representation function, because it plays
a significant role in proving, then

II. to implement the operations, in addition to the concrete representation, and
prove their correctness with respect to the abstract specification.

I. Give a recursive definition to the representation function.

Now we rewrite the function in an explicit form, which was defined implicitly in
part body. This is a plain transformation, which is a conventional form of functions.

It is worth considering the recursive definition. The second component of the
concrete type set is to present the size of the bag, which, if it is 0, indicates the
same state achieved by a create-like operation.

If the bag is not empty, there must be an element of type data that has been
put into the bag, at least once; in other words, the value of the adequate element
of the vector, representing the bag, is at least 1. This way, we trace the value of ϕ
back to the previous state of the execution of the operation binsert referring to the
element. This is the moment when ϕ, as expected, holds the property “morphic.”

Three conditions of theorem ThCCS is to be proved.
Let us introduce the invariants to be used in the proving.

Ia(b) = 0≤bsize(b)≤n
Ic(c) = 0≤m≤n, ahol c=(v,m)

Further on, the next lemma [1/56 pp.] plays a key role.
Lemma(conversion)

An algebraic specification can be converted to the form p/p of type, with the
semantics unchanged.
Consequently, a transformation rule can be formulated for the creation of pre-
and post-conditions. This is how we receive the answer to problem 4.

Transformation rules: (TR)
Give

Ea = {. . . , α(a)⇒fs(fc(a))=h(a), . . . , ¬Ia(fc(a))⇒fc(a)=”undefined”},
where

Ia(a) = 0≤attr(a)≤n.

484 6 th International Conference on Applied Informatics

Conversion.
1. for ∀fs∈Fs : {α(a) ∧ b=fc(a)} b’=fs(b), {b’=h(a)}
2. for f0∈Fc : {”true”} a=f0 {Ia(a) ∧ a=f0}
3. for ∀fc∈Fc\{f0} : {Ia(fc(a))} b=fc(a) { Ia(b) ∧ b=fc(a)}
Hence it is clear that the condition i. of ThCCS holds, i.e. the next theorem

can be proved:
Theorem(i-condition) (ThiC)

(∀c∈C)(Ic(c) ⇒ Ia(ϕ(c))
Proof:

Ic(v,m) = 0≤m≤n ⇔ Ic(v,0) ∨ Ic(v,m) ∧ 1≤m≤n
Let us inspect the truthfulness of the first part (Ic(v,0)):

The second part (Ic(v,m) ∧ 1≤m≤n) can be verified by induction. Supposing
that this is true for some m (1≤m<n), and let us examine the case for m+1:
induction hypothesis⇒ (∃e∈data) (v[e] ≥ 1) ⇒
ϕ2⇒ ϕ(v,m+1)=binsert(ϕ(v[e]::=v[e]-1,m);e)
bag6⇒ bsize(binsert(ϕ(v[e]::=v[e]-1,m);e))=bsize(ϕ(v[e]::=v[e]-1,m)+1
induction hypothesis⇒ 0≤bsize(ϕ(v[e]::=v[e]-1,m)<n ⇒
⇒ 0≤bsize(ϕ(v[e]::=v[e]-1,m)+1≤n
⇒ 0≤bsize(binsert(ϕ(v[e]::=v[e]-1,m);e))≤n
⇔ Ia(ϕ(v,m+1))

Qed.
The condition (ii) of the theorem is true as well.

Theorem(ii-condition) (ThiiC)
{"true"} Q0 {postf 0(ϕ(c)) ∧ Ic(c)}

Proof:
Qbempty: begin m’ ← 0 end;
Let us add the pre- and post-condition generated by ThCCS to code.
{"true"} begin m’ ← 0 end {0≤bsize(b)≤n ∧ b=bempty}
Now the correctness over the representation has remained to be proved, i.e.
{"true"} begin m’ ← 0 end {0≤bsize(ϕ(v’,m’))≤n ∧ ϕ(v’,m’)=bempty}
Let us verify it.
The steps of transforming the post-condition:
bod1⇒ {0≤bsize(ϕ(v’,m’))≤n ∧ (v’,m’)=(nil,0)} ⇒
{0≤bsize(ϕ(nil,0))≤n}

ϕ1⇒ {0≤bsize(bempty)≤n}
bag3⇒ {0≤0≤n} ⇔ "true"

P. Szlávi: On the correctness of object classes 485

Qed.
After all our duty is to show that the condition (iii) of ThCCS holds/is true,
i.e.

(∀f∈F\{f0}) : {pref i(ϕ(c)) ∧ Ic(c)} Qi {postf i(ϕ(c),ϕ(c’)) ∧ Ic(c’)}.

The case of the concrete bag, the proof is to be performed for the operation
bdeletete, binsert, many, and bsize. We will take the next steps.

a) we collect the bag’s axioms with respect to the given operation,
b) using ThC we prepare the pre- and post-condition of the operation,
c) we assemble the implementation,
d) we state the proposition referring to the operation
e) and finally, we prove it; more exactly, in this paper we still do not prove it

since this is well-known in programming.

II. Give algorithms for implementing concrete operations with correctness the-
orems.

bdelete:
a) Axioms:

b) In state oriented form we have:
Here we use the first case of TR, and combine the pre- and post-condition

coming from the axioms bag1 , bag4 :
{y = bempty ∨ y = binsert(b,a)}

z ← bdelete(y,e)
{(y = bempty ∧ z = bempty) ∨ (y = binsert(b,a) ∧ e = a ∧ z = b) ∨
(y = binsert(b,a) ∧ e 6= a ∧ z = binsert(bdelete(b,e),a)}
c) Qbdelete(v,m,e):
begin
(m’,j) ← (m,0);
while j ≤ m’ do (j,v’[e]) ← (j+1,v[e]) od;
if v’[e] ≥ 1 then (v’[e],m’) ←(v[e]-1,m-1) fi;
end;
d) Theorem to prove (Th-bdelete)
{(ϕ(v,m) = bempty ∨ ϕ(v,m) = binsert(b,a)) ∧ 0 ≤ bsize(ϕ(v,m))≤ n }
begin
(m’,j) ← (m,0);
while j ≤ m’ do (j,v’[e]) ← (j+1,v[e]) od;
if v’[e] > 1 then (v’[e],m’) ←(v[e]-1,m-1) fi;
if v’[e] =1 then (v’[e],m’) ← (0, m-1) fi;

486 6 th International Conference on Applied Informatics

end;
{((ϕ(v,m) = bempty ∧ ϕ(v’,m’) = bempty) ∨ (ϕ(v,m) = binsert(b, a) ∧ e=a
∧ ϕ(v’,m’) = b) ∨ (ϕ(v,m) = binsert(b, a) ∧ e6=a ∧ ϕ(v’,m’) = binsert(bdelete
(b,e),a)) ∧ 0 ≤ bsize(ϕ(v’,m’))≤ n }

binsert:
a) Axioms:

b) In state oriented form we have:
bag67⇒ bsize(binsert(b,a))≤ n ⇒ bsize(binsert(b,a)) = succ(bsize(b))
So we need to modify the third case of TR with adding above condition, that we
got from bag6 and bag7 .
{0 < bsize(binsert(b,a))≤ n ∧ 0 ≤ bsize(b)≤ n }

b’ ← binsert(b,a)
{((0 < bsize(b’)≤ n) ∧ b’ = binsert(b,a) }
c) Qbinsert(v,m,e):
begin
j ← 0;
while j ≤ m do (j,v’[e]) ← (j+1,v[e]) od;
(v’[e], m’) ←(v[e]+1,m+1)
end;
d) Theorem to prove (Th-bdelete)
{0 < bsize(binsert(ϕ(v,m), e))≤ n ∧ 0 ≤ bsize(ϕ(v,m))≤ n }
begin
j ← 0;
while j ≤ m do (j,v’[e]) ← (j+1,v[e]) od;
(v’[e], m’) ←(v[e]+1,m+1)
end;
{(0 < bsize(ϕ(v’,m’))≤ n) ∧ (ϕ(v’,m’) = binsert(ϕ(v,m), e) }

many:
a) Axioms:

b) In state oriented form we have:
{b = bempty ∨ b = binsert(y, a) }

x ← many(b)
{(b = bempty ∧ x = zerus) ∨
(b = binsert(y, a) ∧ a = e ∧ x = succ(many(y))) ∨
(b = binsert(y, a) ∧ a 6= e ∧ x = many(y))}
c) Qmany(v,m,e):
begin

P. Szlávi: On the correctness of object classes 487

x ← v[e]
end;
d) Theorem to prove (Th-many)
{ϕ(v,m) = bempty ∨ ϕ(v,m) = binsert(y, a) ∧ 0 ≤ bsize(ϕ(v,m))≤ n }
begin
x ← v[e]
end;
{(ϕ(v,m) = bempty ∧ x = zerus) ∨
(ϕ(v,m) = binsert(y, a) ∧ a = e ∧ x = many(y))+1 ∨
(ϕ(v,m) = binsert(y, a) ∧ a 6= e ∧ x = many(y))}

bsize:
a) Axioms:

b) In state oriented form we have:
{b = bempty ∨ b = binsert(y, a) }

x ← bsize(b)
{(b = bempty ∧ x = zerus) ∨
(b = binsert(y, a) ∧ x = succ(bsize(y)))}
c) Qsize(v,m):
begin
x ← m
end;
d) Theorem to prove qtextbf(Th-size)
{ϕ(v,m) = bempty ∨ ϕ(v,m) = binsert(y, a) ∧ 0 ≤ bsize(ϕ(v,m))≤ n }
begin
x ← m
end;
{(ϕ(v,m) = bempty ∧ x = 0) ∨
(ϕ(v,m) = binsert(y, a) ∧ x = bsize(y)+1)}

4. Summary

In this paper we have outlined a method for the appropriate deduction of the
type class. To prove its correctness, we have used mathematical formalism, and
we have based the derivation on numerous theorems. Our starting point is the
algebraic description of the type: SPEC

(ax)
a .

Our final purpose, on the other hand, is to give the algorithmic specification of the
type, SPEC

(pp)
c , which lies on a fixed representation of SPEC

(ax)
imp . The operations

in the final specification are given by their algorithms. But to prove their correct-
ness, we have to know the pre- and post-conditions of the operations. To generate
this assertion-pair, we go back to the first specification SPEC

(ax)
a .

488 6 th International Conference on Applied Informatics

We have collected the problems emerging from our method, then we have pre-
sented some solutions for them The theorems used during our derivation, as sum-
marized in Fig. 4, serve as theoretical and practical bases as well.

Eventually, the “input” of the method are the algebraic descriptions of the type
to be implemented and the import type, and some algorithms of the procedures.
The “output,” on the other hand, consists of theorems for each operation of the
type. These are the assertions to be proven by one of the well-known methods.

Finally, let us add a note to all this. Following the “philosophy” of our method,
we can declare that there are many other paths towards the code implementing
the target type. An obvious path appears in Fig. 4: SPEC

(ax)
a + SPEC

(ax)
imp →

SPEC(ax) → SPEC
(pp)
c . But, naturally, we can apply countless tiny steps, as

well. It is very important, though, to check the correctness of each step. The
concepts presented previously can be applied for the control of correctness.

Acknowledgements
The author would like to thank Prof. Emeritus László Varga and

Prof. László Kozma from University Eötvös Loránd for useful discussions on the
material presented in this paper.

References
[1] Kozma,L.–Varga,L.: “Adattípusok osztálya”, ELTE TTK, Informatikai Tanszékcso-

port, Budapest, 2001
[2] Kozma,L.–Varga,L.: “A szoftvertechnológia elméleti kérdései”, ELTE Eötvös Kiadó,

Budapest, 2003
[3] Ehrig, H. and Mahr, B.: “Fundamentals of Algebraic Specification 1 Equations and

Initial Semantics”, Springer-Verlag Berlin Heidelberg, 1985
[4] Ehrig, H. and Mahr, B.: “Fundamentals of Algebraic Specification 2 Module Specifi-

cations and Constraints”, Springer-Verlag Berlin Heidelberg, 1990
[5] Kurki-Suonio, R. and Mikkonen, Tommi: “Liberating Object-Oriented Modelling from

Program ming-Level Abstractions”, ECOOP’97 Workshop on Precise Semantics for
Object-Oriented Modelling Techniques 1997, pp. 115-121.

P. Szlávi: On the correctness of object classes 489

[6] Parisi-Presicce, F. and Pierantonio, A.: “An Algebraic Theory of Class Specification”,
ACM Transaction on Software Engineering and Methodology, Vol. 3, No. 2, 1994, pp.
166-199.

Postal address

Péter Szlávi
Informatics Methodology Group
University Eötvös Loránd
1/C., Pázmány P. sétány
H-1117 Budapest
Hungary

