
6 th International Conference on Applied Informatics
Eger, Hungary, January 27–31, 2004.

How long shall we test - a dynamic model

Gábor Stikkel, Gábor Szederkényi

Abstract

Detailed model analysis of a software testing process is presented in this
paper. The maintenance and testing effort of a software development project
is modeled as a predator-prey system in the well-known Lotka-Volterra form.
This modelling technique enables us to estimate the reliability of the software
product. By considering the realistic assumption that only one state variable
is measurable, a linear observer is designed for the on-line estimation of the
residual faults in a system. The problem of model parameter estimation from
measured data is also investigated. Finally, the theory is applied on real data
in order to answer the question in the title.

1. Introduction

Software maintenance and testing activities consume most of software project
resources. This fact motivates research in the field of planning, estimating and
tracking maintenance and testing resources.

An approach for modelling maintenance and testing effort was suggested by
Calzolari et.al. [2]. This model considers as prey the software faults which cause
environmental needs and corrective actions. Predators are the testers or developers
observing and removing the prey. The dynamical change of the number of faults in
the testing process or after release shows similarities to predator-prey competition.

Similar models was introduced in the literature previously. Lehman et.al. [5],[6]
used dynamic models to describe the evolution of relevant software engineering
metrics. Those models were successful in describing the changing of the size of
software systems among releases.

Another approach which is close to the one presented here is in [1] and [8]. The
authors gave a comprehensive system dynamics model of the software development
process. The outcome of their simulation can help in predictions and making
decisions. On the other hand the construction of these models and the estimation
of the parameters is a hard, human intensive task. As far as predator-prey like
model is concerned, the parameter estimation can be automated.

465

466 6 th International Conference on Applied Informatics

2. Modelling testing effort by differential equations

The classical predator-prey model was proposed by V. Volterra and A.J. Lotka.
In this model a system of two differential equations model the variation of two
populations. This model was adapted to maintenance and testing activities by
Calzolari et.al. [2] in the following way: corrective interventions are considered to
be predating software faults and the associated effort is fed by the discovery of
faults.

The result of the adaptation is two new models a linear and a nonlinear one.
The dynamics generated by these models represents the effort evolution within a
given release, hence when a new release is delivered the dynamics starts again with
another initial values.

2.1. Proposed linear model

The linear model is defined by the following differential equations [2]:

ẋ1 = −ax2

ẋ2 = bx1 − cx2.

The first variable denotes the residual faults in the underlying software system
while the second one is the testing or maintenance effort. Parameters a, b and c are
positive. The first equation describes the decrease in the number of residual faults
as a function of actual value of testing effort. The latter quantity can increase with
a rate proportional to the available fault number. The decrease term in the second
equation represents the intrinsic mortality of this population.

The modification of the classical Volterra-Lotka model was needed because the
faults can not reproduce themselves. A possible system evolution is depicted in
Figure 1.

0 2 4 6 8 10 12 14 16 18 20
0

50

100

150

Time

R
es

id
u

al
 F

au
lt

s

0 2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

120

Time

T
es

ti
n

g
 E

ff
o

rt
 (

m
h

r)

Figure 1: A possible evolution of the linear model with parameters a = 0.1, b = 1
and c = 1.1.

G. Stikkel, G. Szederkényi: How long shall we test - a dynamic model 467

3. Observer design for the linear model

3.1. Observer theory for linear time invariant systems

The theory of linear time invariant systems is dealing with the following system
of linear differential equations:

ẋ = Ax+Bu (1)

y = Cx (2)

where x represents the state of the system, u is the input while y is the output.
In the proposed linear model [2] the matrices are

A =

[
0 −a
b −c

]
, B = 0, C = [0 1].

A method for estimating the parameters was presented in [2] for both linear and
nonlinear models. In the nonlinear case we will suggest another method but for
the linear case parameters are supposed to be known in the remaining.

From system theoretic point of view it is an interesting question whether the
state x can be reproduced from the input u and the output y. The answer is
affirmative if the system is observable [7], i.e. y(t) ≡ 0 implies that x(0) = 0. An
equivalent characterization of observability of linear systems is that the kernel of
the matrix

C
CA
...

CAn−1

contains only the zero vector.
The observability can be carried out by a state observer [7] which is another

dynamical system of the form

˙̂x = Ax̂+Gu+Hy. (3)

The system (3) is called state observer for system (1) if for all initial states
x0, x̂0 and for all input u

lim
t→∞

x̂(t)− x(t) = 0.

3.2. Observer design

The computation of the matrices G,H can be found in [7]. It can be shown
that in our special case G = H = 0, hence

˙̂x = Ax̂

468 6 th International Conference on Applied Informatics

is the state observer for system (1).
The effectiveness of the observer in applications depends on the initial condition

x̂(0). If a project manager can guess the exact value of x1(0) then by knowing x2(0)
the observer initial state can be set to x̂(0) = [x1(0) x2(0)]

T and the estimation
error, (x̂−x) will be identically zero. It means that the manager is able to track the
number of the residual faults. It is a difficult task to give an accurate estimation
of x1(0). The next section two methods are suggested how to handle this problem.

3.3. Estimation methods for the initial value of the observer

The first and straightforward method is to use some optimization method. We
have tested a MATLAB built-in function (fminsearch). A function that simulates
the linear system is defined whose inputs were the five parameters of the system
(a, b, c, x1(0) and x2(0)). Then the error of the approximation was defined as

N∑

k=1

(x̃2(kT)− x2(kT))
2,

where x̃2(k) is the observed value of effort at time instant kT , while x2(kT) is
the simulated value of this variable. T denotes the sampling time. However, the
results of parameter estimation was not as good as expected hence we suggest
another method described in the rest of this subsection.

Denote the variation of the state variables between two observation points by

Dk =

[
x1(k − 1)− x1(k)
x2(k − 1)− x2(k)

]
, k = 1, . . . , N.

The solution of the system of differential equations (1)-(2) implies that

Dk = eATDk−1, k = 2, . . . , N.

Then M := eAT satisfies the following system of equations:

[D2 D3 . . . DN] = M [D1 D2 . . . DN−1].

It is well-known ([11]) that the eigenvalues of a matrix and of its exponential are in
strong relation. Namely, if λ is an eigenvalue of matrix A then eλ is an eigenvalue
of eA. Hence by calculating the eigenvalues of M , say λM

1 , λM
2 , the eigenvalues of

A are λA
i =

logλM
i

T , i = 1, 2. Considering (1)-(2), the relation between parameters
of the system and eigenvalues of A we have that

ĉ = −(λA
1 + λA

2)

âb̂ = λA
1 λ

A
2

are the estimations for the parameters of the system. The only problem is that we
need to estimate a and b independently. From (1) we can estimate a by taking into
account that

x1(kT)− x1((k − 1)T)

T
= −ax2((k − 1)T)

G. Stikkel, G. Szederkényi: How long shall we test - a dynamic model 469

and all quantities in the above equation is known except a.
As far as the estimation of the initial value x1(0) is concerned the solution of

the differential equation implies that (Mk−1 −Mk)x(0) = Dkx(0), k = 1, . . . , N .
It follows that x(0) is the solution of the following equation:

I −M
M −M2

...
MN−1 −MN

x(0) =

D1

D2

...
DN

 .

We had data on a case study project (see the next section for details) to test
the estimation methods. The intrinsic property of the problem implies that the
estimation of the number of initial faults in the software can not be known. We
examined the goodness of fit of the estimation of the two state variables. The
squared difference (

∑
k(x̃i(kT) − xi(kT))

2) was used to measure the fit of the
parameters. The comparison of the two approaches (Table 1) shows that the latter
provides better approximation. Next section contains a figure (Figure 4) about the
result of estimations. Part of our future work is to test this estimation method on
more projects.

Squared error of x1 Squared error of x2

Method 1 121.1 10.09
Method 2 52.1 4.87

Table 1. Comparison of parameter estimation methods.

4. Application of the linear observer to real data

Our study project was an open, standards based, modular and distributed ap-
plication. The source has a length of approximately 250,000 lines of code (LOC
- without comments) and was written in C++ with an effort of approximately
75,000 man-hours. We have effort data on this project (x2 variable) from which
parameters can be estimated, see Figure 4.

We also have data on faults found during testing from which we could esti-
mate the initial value of the observer. The goodness of the observer can be tested
because the number of residual faults (i.e. the observed x1 variable) should be
approximately equal to the difference of our estimated initial value (x1(0)) and the
number of faults found during testing.

470 6 th International Conference on Applied Informatics

Figure 2: Effort data on the project (solid) and the testing effort given by the
estimation methods (dashed - method 1; a = 0.31, b = 0.9 and c = 1.22; dotted -
method 2; a = 0.37, b = 1.2 and c = 1.02).

Method 2 is used for parameter estimation in the rest of the paper. The number
of faults found during testing was 848. The estimate the initial value of the residual
faults is 1,010. Hence the model can be accepted if the simulation of the first
variable results that there are ≈ 152 faults in the system after test. Figure 4 shows
the simulation results which tells us that there are 163 residual faults in the system,
hence the error of the estimation is below 10 percent.

G. Stikkel, G. Szederkényi: How long shall we test - a dynamic model 471

0 1 2 3 4 5 6 7
0

100

200

300

400

500

600

700

800

900

1000

Weeks

R
es

id
u

al
 F

au
lt

s

Figure 3: Simulation result of the first variable (residual faults).

Accepting this model we arrived to answer the question posed in the title of the
paper. Suppose that the manager would like to continue testing until the estimated
fault content of the software system is below 50. How long shall we test? Running
again the simulations with the identified parameters we can depict Figure . It
suggests that the testing process should continue for four more weeks to reach the
specified quality. The model can also be used to answer what-if questions regarding
the trade off between testing effort and software quality.

0 2 4 6 8 10 12 14
0

100

200

300

400

500

600

700

800

900

1000

Weeks

R
es

id
u

al
 F

au
lt

s

Now
 163

Week 11
 <50

Figure 4: Simulation result of the first variable (residual faults).

472 6 th International Conference on Applied Informatics

5. Conclusion

Proposed maintenance and testing effort based on linear Lotka-Volterra system
was revisited and was investigated from system theoretic point of view. We have
found that state observer for the linear model can be used to predict residual
number of faults in a software system. It can also give estimation for the manager
how long the testing phase should be continued in order to reach a specified software
quality. Future work will be focused on model extension and observer design for
the nonlinear model.

Acknowledgements
The authors would like to thank Domonkos Asztalos and Attila Kovács for their
valuable comments and for making it possible to conduct a case study in a software
producing environment.

References

[1] T.K. Abdel-Hamid: The dynamics of software project staffing: a system dy-
namics based simulation approach. IEEE Transactions on Software Engineering,
15(2). 1989. 109-119.

[2] F. Calzolari, P. Tonella, G. Antoniol: Maintenance and testing effort modeled
by linear and nonlinear dynamic systems. Information and Software Technology,
43(2001). 477-486.

[3] M. Grottke, K. Dussa-Zieger: Prediction of Software Failures Based on Sys-
tematic Testing. Electronic Proc. 9th European Conference on Software Testing
Analysis and Review (EuroSTAR), Stockholm, 2001.

[4] A. Isidori, Nonlinear Control Systems. Springer–Verlag, 1995.

[5] M. M. Lehman, D.E. Perry, J.F. Ramil: Implication of evolution metrics on
software maintenance. Proceedings of the International Conference on Software
Maintenance, Bethesda, MD, 1998, pp. 208-217.

[6] M. M. Lehman, D.E. Perry, J.F. Ramil: On evidence supporting the feat hy-
pothesis and the laws of of software evoution. Proceedings of the Fifth Interna-
tional Symposium on Software metrics, Bethesda, MD, 1998.

[7] J. M. Maciejowski: Multivariable Feedback Design. Addison-Wesley, 1989. Wok-
ingham, U.K.

[8] R. Madachy: System dynamics modelling of an inspection-based process, Pro-
ceedings of the International Conference on Software Engineering, Berlin, 1996.
pp. 376-386.

G. Stikkel, G. Szederkényi: How long shall we test - a dynamic model 473

[9] D. Satoh: A Discrete Gompertz Equation and a Software Reliability Growth
Model. IEICE Transactions on Information and Systems E83(2000) No. 7.
1508-1513.

[10] D. Satoh, S. Yamada: Parameter Estimation of Discrete Logistic Curve Models
for Software Reliability Assessment Japan Journal of Industrial and Applied
Mathematics 19(2002) No. 1. 39-53.

[11] G. Stoyan, G Takó: Numerikus módszerek I. (in Hungarian) Typotex, 1996.
Budapest, Hungary.

