
6 th International Conference on Applied Informatics
Eger, Hungary, January 27–31, 2004.

Comparison of Object-Oriented and
Paradigm Independent Software

Complexity Metrics

Zoltán Porkolába, Ádám Sillyeb

Department of Programming Languages and Compilers,
Eötvös Loránd University, Faculty of Informatics

e-mail: gsd@elte.hua, madic@elte.hub

Abstract
Structural complexity metrics play important role in modern software

engineering. Testing, bug-fixing and maintenance covers more and more per-
centage of the software lifecycle. The cost of software maintenance is mostly
depends on the structural complexity of the code. A good complexity mea-
surement tool can trigger critical parts of the software even in development
phase, measure the quality of the code, predict the cost of testing efforts and
later modifications.
With the raise of object-oriented paradigm, research efforts at both the acad-
emic world and the IT industry has focused metrics based on special object-
oriented features, like number of classes, depth of inheritance or number of
children. Several implementations of such metrics are available for the most
popular languages (like Java, C++, ...) and platforms (like Eclipse).
However object-orientation is not the only programming style used in soft-
ware construction. We still have large number of legacy code written in pro-
cedural or even unstructured - way. For these codes, object-oriented metrics
are not suitable. Also in modern programming languages (most importantly
in C++) multiparadigm design is frequently used. An adequate measure
therefore should not be based on special features of one paradigm, but on ba-
sic language elements and construction rules applied to different paradigms.
In this article, we make both theoretical and empirical comparison between
such multiparadigm metrics and well-known object-oriented ones to decide
their scope, identify strong and week points, and make suggestions on their
practical usage.
Categories and Subject Descriptors: D.1.5 [Programming Techniques]:
Object-oriented Programming; D.2.8 [Metrics]: Complexity Measures
Key Words and Phrases: Software complexity measures, Object-oriented
complexity measures, Multiparadigm programming

435

436 6 th International Conference on Applied Informatics

1. Introduction

Structural complexity metrics play an important role in modern software en-
gineering. Testing, bug fixing cover more and more percentage of the software
lifecycle. The most significant part of the cost we spent on software connected to
the maintenance of the software. The cost of software maintenance is mostly de-
pends on the structural complexity of the code. A good complexity measurement
tool can trigger critical parts of the software even in development phase. It can
help to write good quality code, and can make assumptions on the predicted costs.

With the raise of the object oriented paradigm research efforts at both the
academic world and the IT industry has have focused metrics based on special
object oriented features, like number of classes, depth of inheritance tree or number
of children classes. Several implementations of such metrics are available for the
most popular languages (like Java, C#, C++) and platforms (like Eclipse [Eclip]).

However, object orientation is not the only programming style used in software
construction. We still have a large amount of legacy code written in procedural or
even in unstructured way. For that code, object oriented metrics are not suitable.
Also in modern programming languages (most importantly in C++) multiparadigm
design is frequently used [Cop98] [CE00]. An adequate measure therefore should
not be based on special features of one paradigm, but on basic language elements
and construction rules applied to different paradigms.

2. Currently popular metrics

2.1. Size metrics

Most primitive metrics are based on the physical attributes of the program
code. The LOC (lines of code) measures the actual size of code, while eLOC
(effective lines of code) differs only in ignoring the possibly ineffective lines like
comments and block commands and so on. The number of commands (NOC)
works similarly it counts the statements. While size metrics are cheap to compute
and has correlation with many other more complex metrics, they have a critical
weakness, namely they completely ignore the program semantics (thus they can
produce misleading results).

2.2. Structural metrics

The first well-known structural measure was developed by McCabe. The cyclo-
matic complexity is based on the number of predicates (branches) in a program:
The aim of this metrics was to approximate the testing effort of FORTRAN pro-
grams; therefore the cyclomatic number reflects the independent testing passes of
the program. The inadequacy of the measure becomes clear, if we realize that the
complexity also depends on the nesting level of the predicate nodes. According to

Z. Porkoláb, Á. Sillye: Comparison of Object-Oriented and. . . 437

the McCabe cyclomatic complexity, a sequence of ten loops is identically complex
to ten loops nested into each other.

Harrison and Magel [HM81] proposed a metric, which also takes into account the
nesting depth of the predicate statements. The more nested statements weighted
higher in the complexity. This concept was improved by Howatt and Baker [HB89]
whose definition for nesting level was applicable for non-structured programs too.

2.3. Object oriented metrics

Chidamber and Kemerer [Chi94] and Henderson-Sellers [Hen96] gave one of
the most complete discussions about object-oriented metrics. They encounter the
following important object oriented complexity properties:

WMC (Weighted Methods per Class): The summarization of some structured
complexity metrics (most frequently: McCabe) for the methods of a class.

DIT (Depth of Inheritance Tree): Shows the position of the class in the inheri-
tance tree.

NOC (Number of Child Classes): This measures the importance of the class
rather than the complexity.

CBO (Coupling Between Object Classes): The number of references to the class
from others (fan-in) and those that are pointing out of the class itself (fan-out).
This measures the vulnerability of the class.

RFC (Response for Class): Calling a method on the interface of the class gen-
erates other method calls. The more traffic is generated by an incoming call the
testing efforts will be harder.

LCOM (Lack of Cohesion in Methods): This metrics based on an empirical
result that the cohesion within a class reflects the better abstraction.

3. A paradigm independent metric

A paradigm-independent software metrics are applicable for programs written
in different paradigms or in mixed-paradigm environment. Such metrics should
be based on general programming language features, which are paradigm- and
language independent. The paradigm-dependent attributes are derived from these
features.

These features are the following:

• Control Structure of Program: most of the programs have the same control
statements.

• Complexity of data types: reflects the complexity of data used (like classes)

• Complexity of data access: connection between control structure and data
gives the direction of the data flow and nesting depth of the data handing.

Now we give a brief definition for the AV graphs: The precise introduction of
the AV-graph metric can be found in [PZ1] and [PZ2]

438 6 th International Conference on Applied Informatics

Consider a data and flow graph (AV graph) G′ := (N ∪D,E ∪ R, s, f) where
N is the set of the control nodes, D the set of data nodes (or attributes), E the
set of flow edges, R the set of data access edges. Let p denote a predicate node in
the execution flow, so that p has at least two outgoing flow edges. (An AV graph
for a class is a set of execution graph components and data nodes.)

The nesting depth of node p is nd(p) := |pred(p)|. This means that in the
execution flow between start and the p node we can fount exactly nd(p) predicate
nodes. The total nesting depth of a graph is simply ND′(G′) :=

∑
p∈N ′

nd(p), while

the complexity of a class is: SN ′(G′) := |N ∪D|+ND′(G′).

The complexity of the AV graph depends on the control structure and the
data handling. The control structure - with the help of predicate nodes - defines
the nesting depth of control nodes and the depth of data handling. The total
complexity is expressed by the nesting level of both data and control.

A class-graph O = {G|Gis an AV graph} is a finite set of AV graphs (the mem-
ber graphs). The set of edges ε = (E ∪ R) represents the E edges belonging the
control structure of one of the member graphs and R as the data reference edges
of the attributes. As the control nodes (nodes belonging to the control structure of
one of the member graphs) were unique, there is no path from one member graph
to another one. However, there could be attributes (data nodes) which are used
by more than one member graph. These attributes have data reference edges to
different member graphs.

This is a natural model of the class. It reflects the fact that a class is a coherent
set of attributes (data) and the methods working on the attributes. Here the
methods (member functions) are procedures represented by individual data flow
graphs (the member graphs). Every member graph has its own start node and
terminal node, as they are individually callable functions. What makes this set of
procedures more than an ordinary library is the common set of attributes used by
the member procedures. Here the attributes are not local to one procedure but
local to the object, and can be accessed by several procedures.

The AV graph metric is based only on the paradigm independent properties, so
it a multi paradigm metric.

• Control structures: the complexity of method control structures are expressed
directly in the AV graph.

• Complexity of data types: local variables in methods and attributes are ex-
pressed as data nodes.

• Complexity of data handling: the interconnection between control structure
and data is also expressed directly in the AV graph.

Z. Porkoláb, Á. Sillye: Comparison of Object-Oriented and. . . 439

The figure shows the AV graph of an example class. The round nodes are
the instructions in the execution flow which is represented by black arrows, the
triangles are the data nodes with green arrows representing the data handling.

4. About the comparison process

4.1. The measuring tool

We implemented measuring tool that computes several software metrics. It
supports both Java 1.3 and 1.4 standards. (We are planning to extend the support

440 6 th International Conference on Applied Informatics

for C# and C++.)
The calculated metrics are the following:

4.2. The test data

Our test data for the comparison process was a selection of large Java modules
and libraries. The overall size of the test input was more than 1.5 million effective
lines of code that contain more than 17.000 classes.

The following table shows the test modules and their physical sizes:

4.3. Calibration of the tool

During the comparison process, our goal was to tune our program to achieve
statistically similar results that other measurer tools provide.

Difficulties
Comparing several the outputs of several tools and several metrics raises many

important questions that make the evaluation complicated:

• Metrics are not defined precisely enough from the view of implementation.
Almost every tool uses slightly different interpretation of software complexity
metrics.

• It is quite common from the implementers that they are simplifying the defi-
nitions of the metrics; therefore, each tool has somewhat different implemen-
tation.

Z. Porkoláb, Á. Sillye: Comparison of Object-Oriented and. . . 441

• Tools have several major or minor bugs, so only partial measurements are
available.

• Available tools working on different abstract program trees. This means that
they are parsing the input sources with different parser engines that gener-
ate different syntax trees. Theoretically, this would not be a problem if we
suppose that these abstract trees contain all necessary information for the
metrics computation. However, the practice shows that the different input
data structure leads different implementation compromises, consequently the
results could not be accurate enough to compare.

• The different output formats of the tools need conversion to make them uni-
form.

Example
One of the typical problems that complicates the comparison is the computa-

tion of the LCOM (Lack of COhesion in Methods) metric. Remember that this
number is illustrating the quality of the abstraction for a class. The LCOM number
according to the definition is LCOM=|P|if |P|-|Q|≥ 0, otherwise 0. The P and Q
are standing for:

• The number of method pairs within the class that access different fields (P).

• The number of method pairs that access at least one common field (Q).

The problem rise when the source uses the this and super keywords to refer
the appropriate class. These references must not be taken in account in P and
Q because these do not affect the cohesion within a method. Even though these
references are not explicitly part of the abstraction, some tools count them as a
class field.

Such minor differences imprecise results that can make the evaluation and the
comparison impossible.

5. Results and conclusion

Results
Our measurements produced several interesting results about the software met-

rics. We compared the several metric results using statistical correlation.
Comparing object-oriented metrics with each other resulted that there are no

relationship between them in the sense of correlation. Most of the values were
under 0.2 and all of them were under 0.5. (It is interesting that there are higher
correlation values between LCOM and the Number of Fields, understanding this
experience may need further research.) It is clear that the object-oriented metrics
have very different meanings, so the low correlation between them is reasonable.

442 6 th International Conference on Applied Informatics

There is no statistical correlation between the object oriented and multi par-
adigm metrics. All correlation values were under this unexpected, but very im-
portant result points out that the importance of the structural complexity of the
software is very high.

Tools are not reliable
There are several difficulties in the way of creating a reliable measuring tool,

because every major step during the complexity computation has uncertain factors:
there are no precise definitions for metrics, the different parsing engines produce
different abstract syntax trees and the implementation compromises and simplifi-
cations are making the results almost incomparable.

Object oriented and multi paradigm metrics
Quantities from the Object-Oriented Metrics suite are showing some rough

properties of the software. In other words, they are depicting only the big picture
about source. A good example is the depth of inheritance tree: according to our
measures Eclipse, Java and jBoss all have six levels deep inheritance trees, even
though they have completely different properties.

By considering more (detailed) properties of the software, multi paradigm met-
rics have much higher density. Evaluation of the results shows that the structural
complexity of methods is extremely increasing the overall complexity of the software
product, so it is not satisfactory to consider only its object-oriented properties.

Appendix

The following table shows the statistical correlations between several metrics
calculated on jBoss application server. The results for the other tested software
were similar to this. The low correlation numbers (under 0.5) are highlighted by
blue while the high correlations (above 0.9) are highlighted by red.

Z. Porkoláb, Á. Sillye: Comparison of Object-Oriented and. . . 443

References
[Bal01] Balla, K. The Complex Quality World, Eindhoven University Press, Eindhoven

(2001).
[CE00] Czarnecki K., Eisenecker U.W. Generative Programming Addison-Wesley, (2000).
[Chi94] Chidamber S.R., Kemerer, C.F. A metrics suit for object oriented design, IEEE

Trans. Software Engeneering, vol.20, pp.476-498, (1994).
[Cop98] Coplien J.O. Multi-Paradigm Design for C++ Addison-Wesley, (1998).
[Eclip] Eclipse.org formation http://www.eclipse.org/org/index.html
[FN93] Fóthi Á., Nyéky-Gaizler J. On the Complexity of Object-Oriented Programs Proc.

of the 3rd Symp. on Programming Languages and Software Tools Kaariku, Estonia,
1993.

[FNP99] Fóthi, Á., Nyéky-Gaizler, J., Porkoláb, Z. On the Complexity of Class Proc. of
the FUSST’99, Tallin, Estonia, pp.221-231 (1999).

[Fen00] Fenton, N.E., Neil, M. Software Metrics: Roadmap, The Future of Software
Engineering. ACM Press, New York, (2000).

[Gra89] Grassberger, P. Estimating the information content of symbol sequences and
efficient codes IEEE Transactions on Information Technology. Vol.35,669. (1989).

[HB89] Howatt,J.W. and Baker,A.L. Rigorous Definition and Analysis of Program Com-
plexity Measures: An Example Using Nesting The Journal of Systems and Sofware
10, pp.139-150 (1989).

[HK81] Henry S., Kafura D. Software Sructure Metrics Based of Information Flow IEEE
Trans. Software Engineering, vol.7, pp.510-518 (1981).

[HM81] Harrison,W.A. and Magel,K.I. A Complexity Measure Based on Nesting Level]
ACM Sigplan Notices,16(3), pp.63-74 (1981).

[Hal72] Halstead, M. H. Natural laws controlling algorithm structure SIGPLAN Notices,
vol.7. pp.19-26 (1972).

[Hen96] Henderson-Sellers, B., Object-oriented metrics: measures of complexity,
Prentice-Hall, pp.142-147, (1996).

[Hum89] Humphrey, W.S. Managing the Software Process, Addison-Wesley, Reading,
Massachusetts (1989).

[Koko99] Kokol, P., Podgorelec, V., Zorman, M. Universality - A Need For A New
Software Metric International Workshop on Software Measurement (IWSM’99) Lac
Supérieur, Canada, (1999).

[McC76] McCabe, T.J. A Complexity Measure, IEEE Trans. Software Engineering, SE-
2(4), pp.308-320 (1976).

[Meth] Method Object http://www.c2.com/cgi/wiki?MethodObject
[Mor89] Morris, K.L. Metrics for Object-Oriented Software Development Environments,

Master’s Thesis, M. I. T. Sloan School of Management, (1989).
[PZ1] Fóthi Á., Nyéky-Gaizler J., Porkoláb Z The Structured Complexity of Object-

Oriented Programs Computers and Mathematics with Applications accepted for pub-
lication (2002)

[PZ2] Porkoláb Zoltán: Programok strukturális bonyolultsági mérőszámai, Doktori
Értekezés, ELTE 2002 (in hungarian)

[Piw82] Piwowarski,P. A Nesting Level Complexity Measure ACM Sigplan Notices, 17(9),
pp.44-50 (1982).

444 6 th International Conference on Applied Informatics

[Sche93] Schenkel, A., Zhang, J., Zhang, Y. Long range correlations in human writings
Fractals, Vol.1, no.1, pp.16-19. (1993).

[Schn91] Schneidewind, N., F. Validating Software Metrics: Producing Quality Discrim-
inators Proceedings of the Conference on Software Maintenance (CSM91), Sorrento,
Italy, (1991)

[Shan51] Shannon, C.E. Prediction and entropy of printed English Bell System Technical
Journal. Vol.30,50. (1951).

[Vil] Vil - View Intermediate Language http://www.1bot.com
[Wey88] Weyuker, E.J. Evaluating software complexity measures] IEEE Trans. Software

Engineering, vol.14, pp.1357-1365 (1988).
[Zus99] Zuse, H. Software Complexity: Measures and Methods De Gruyter, Berlin,

(1991).
[Zus99] Zuse, H. Validation of Measures and Prediction Models International Workshop

on Software Measurement (IWSM’99), Lac Supérieur, Canada, (1999).

Postal address

Zoltán Porkoláb, Ádám Sillye
Department of Programming Languages and
Compilers
Eotvos Lorand University, Budapest,
H-1117 Pazmany Peter setany 1/c.
Hungary

