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Abstract

Recently possible applications of the entropy and different entropy-based
divergence measures are investigated in many areas of information technology.
In case of digital speech processing publications can be found for entropy-
based segmentation of noisy speech both in time domain and in frequency
domain. The application of the Jensen-Shannon divergence has also been
reported in a speaker recognition problem. In this paper an algorithm is
proposed using the Jensen-Shannon divergence in time-domain for segmenting
noisy speech.

Categories and Subject Descriptors: C.3 [Special-purpose and appli-
cation-based systems (J.7)]: Signal processing systems

Key Words and Phrases: speech segmentation, robust algorithm, Jensen-
Shannon divergence

1. Introduction

The entropy-based approach has increasing importance in development of ro-
bust algorithms for nonstationary signal processing applications. From conceptual
point of view there are algorithms using directly the notion of Shannon’s or Rényi’s
entropy, but the applications of some entropy-based divergence measures have also
been published. Among these there are papers on successful applications of the
Jensen-Shannon divergence, the generalized Jensen-Shannon divergence or gener-
alized Jensen-Rényi divergence. Several examples are the following: analysis of
symbolic sequences [1] [2], digital image segmentaion and registration [3] [4], digi-
tal speech processing applications [5] [6] [7].
Considering the latter case in this paper, there are many efforts wordwide to develop
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speech information systems using speech input. However, the incoming speech
signal is usually degraded by noise and different channel distortions – therefore
development of algorithms with some “immunity” contrary to above mentioned de-
grading effects is very important, so it is the subject of intensive research recently.
In the next paragraph a succint overview of these robust, entropy-based speech
processing algorithms is given as illustration.
Robust endpoint detection is important in some applications, e.g. in isolated word
recognition. The algorithm, proposed in [5] uses the notion of Shannon-entropy.
Following the frame-by-frame processing method – which is widely accepted in
digital speech processing [8] [9] – the authors computed the entropy contour us-
ing the so called normalized and wighted spectral energy vector, and it has been
used for determining the endpoints of the uttered word. As it has been reported,
considering both the speech-detection accuracy and the speech recognition accu-
racy, the entropy-based algorithm gave better results, than the conventional energy
contour based one. For a similar purpose there is another example [7], but the algo-
rithm works directly in the time domain instead of frequency domain, by using the
amplitude histogram for computing the Shannon-entropy. In the task of isolated
word recognition the novel algorithm achieved better word recognition accuracy in
comparison with the energy-based method. Finally, the authors of [6] proposed
an algorithm for the robust speaker recognition problem, by marking the most
important speech segments in verification the talker using the Jensen-Shannon di-
vergence.
In this paper the application of the Jensen-Shannon divergence for speech segmen-
tation is investigated.

2. The entropy and the Jensen-Shannon divergence

The basis of the algorithms mentioned in the previous section is the concept
of the so called Shannon-entropy, defined on a discrete, finite probability distrib-
ution [10]. Following this notion, let P = {pj , j = 1, ...,K} be a discrete, finite

probability distribution, where K ∈ N , K ≥ 1, 0 ≤ pj ≤ 1, and
K∑
j=1

pj = 1. The

Shannon-entropy of the distribution is defined as H (P ) = −
K∑
j=1

pj · log (pj). Al-

though it measures the uncertainty in bit/symbols in case of base 2 logarithm, the
entropy could also be considered as a numerical value assigned for the distribution
and the inequality 0 ≤ H (P ) ≤ log (K) holds for any discrete, finite probability
distributions. The largest value of the Shanon-entropy could be achieved in case of
uniform distribution P =

{
pj =

1
K , j = 1, ...,K

}
, while it has the smallest value

when the distribution is degenerate, that is there exists some pj = 1, and the other
values are 0. The properties of the Shannon-entropy are discussed in detail in [11]
[12]. There are useful “computing rules” in the latter textbook (which could be de-
rived from the continuous extension of the functions not defined in the given points),
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in case of r ≥ 0, s > 0 : 0 · log 0
r = 0 · log r

0 = 0, s · log s
0 = +∞, s · log 0

s = −∞.
Using the entropy-concept above, the relative entropy could be defined between
two probability distribution as follows. Let’s denote by P = {pj , j = 1, ...,K}
and Q = {qj , j = 1, ...,K} two discrete, finite, probability distributions, where

0 ≤ pj ≤ 1, 0 ≤ qj ≤ 1,
K∑
j=1

pj = 1,
K∑
j=1

qj = 1. The relative entropy, or the so

called Kullback-Liebler divergence is defined as: DKL (P‖Q) =
K∑
j=1

pj · log
(

pj

qj

)
.

It has the property of non-symmetry, DKL (P‖Q) 6= DKL (Q‖P ), and it has no
upper bound in case of a specific degenerate distribution, which properties are not
useful in many applications. However, it is possible to define the average distrib-
ution APQ of the probability distributions P and Q as: APQ = {aj , j = 1, ...,K},
aj =

pj+qj
2 . Then, the Jensen-Shannon divergence DJS (P,Q) of the distribu-

tions P and Q could be defined using the notion of Kullback-Liebler divergence

as: DJS (P,Q) =
DKL (P‖APQ) +DKL (Q‖APQ)

2
. The Jensen-Shannon di-

vergence could also be defined using diretly the notion of Shannon-entropy as:

DJS (P,Q) = H (APQ)−
H (P ) +H (Q)

2
.

The main properties of the Jensen-Shannon divergence are given below:
(I) 0 ≤ DJS (P,Q)
(II) DJS (P,Q) = DJS (Q,P )
(III) DJS (P,Q) = 0 ⇔ P = Q

Comments:
1. It could be proven, that the inequality DJS (P,Q) ≤ 1 also holds.
2. The triangular-inequality DJS (P,Q) +DJS (Q,R) ≥ DJS (P,R) does not hold
for any P, Q, R discrete probability distribution triplets, therefore the Jensen-
Shannon divergence could not be considered as a distance between two discrete
probability distributions. However, as it is provable, for the expression of d (P,Q) =√

DJS (P,Q), the triangular-inequality holds too [13].
A useful generalisation of Jensen-Shannon divergence for N discrete, finite proba-

bility distribution could be given as: DJS (Pi, ωi) =
N∑
i=1

ωi ·DKL (Pi‖AP1...PN ) =

H (AP1...PN
)−

N∑
i=1

ωi ·H (Pi), where the average distribution is defined as AP1...P2 =

N∑
i=1

ωi · Pi, 0 ≤ ωi ≤ 1 and
N∑
i=1

ωi = 1. One benefit of the definiton above

is that the weights could be considered as free parameters. By applying the
definition of the generalised Jensen-Shannon divergence for two probability dis-
tributions, the expression below could easily be written: DJS (P,Q, ω1, ω2) =
H (ω1 · P + ω2 ·Q)− [ω1 ·H (P ) + ω2 ·H (Q)], 0 ≤ ω1, ω2 ≤ 1, ω1 + ω2 = 1.
It is worth-while mentioning, that the generalised Jensen-Shannon divergence could

be generalised further, by using Rényi’ entropy Hα (P ) = 1
1−α · log

(
K∑
j=1

pαj

)
,
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α > 0,, α 6= 1, instead of Shannon’s one.

3. Speech segmentation using the Jensen-Shannon
divergence

In case of speeech processing, there are many possible speech representations
[8] [9] for determining the discrete, finite probability distributions necessary for
computing the Jensen-Shannon divergence discussed in the previous section. The
algorithm proposed in this paper uses the sampled and quantized speech signal as
input; while the speech-duration data, necessary for stopping the recursive proce-
dure, can be found in [14].
Let’s denote byA = {a1, a2, ..., aK} the finite set of symbols (alphabet), and let P =
{pj , j = 1, ...,K} be a discrete, finite probability distribution. Let’s denote by S a
finite sequence of symbols in A, so that Pr ob {symbolajoccursinthesequenceS} =
pj . In case of a finite sequence of length N , and for a suitable large N , the proba-
bility pj could be estimated by the relative frequency as fj =

Nj

N ≈ pj , where Nj

denotes the number of occurance of symbol aj in the symbol-sequemce S. (For nu-
merical experiments these type of sequences could be generated by using uniformly
distributed pseudo-random numbers [15], thus simulating the event occuring with
probability pj , and therefore choosing symbol aj from A as actual symbol of the
symbol sequence.)
Supposing that the first n symbols (left sequence) of the finite symbol sequence of
length N generated by the probability distribution P = {pj , j = 1, ...,K}, and the
remaining N − n symbols (right sequence) are generated by the probability distri-
bution Q = {qj , j = 1, ...,K}, we can say, that there is a change point at n in the
finite sysmbol sequence S. Two important questions are the following: a) in case of
unknown probability distributions P and Q, and a given symbol sequence of length
N, is there a change point in the sequence?, and b) if there is a change point, where
is it? These questions have been investigated in detail in [1], and an algorithm,
given succintly below, has also been proposed in the article for determining the
change point.
Obviously, a symbol sequence of length N could be divided in two parts at N − 1
positions. Let’s denote by n = 1, 2, ..., N − 1 the sequence of possible change
point-candidates. Using this notation, the symbol sequence could be divided in
two parts (left-sequence and right-sequence), consisting of n or N − n symbols,
respectively. Let’s denote Pn (S) and QN−n (S) the relative frequencies of sym-
bols fj , j = 1, ...,K, which could be estimated using the left-sequence and the
right-sequence respectively, let’s also introduce the weights as ω1 = n

N , ω2 = N−n
N ,

and finally let’s compute the sequence of the generalised Jensen-Shannon diver-
gences DJS (n) = DJS (Pn (S) , QN−n (S)) using all change point-candidates! The
decision rule for the change point proposed in [1] uses the largest value of such a se-
quence: Dmax

JS = maxn {DJS (n)}, and for the change point n0 : DJS (n0) = Dmax
JS

holds.
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In this paper some results are given for segmenting speech sample sequences by
applying a suitable modified version of the algorithm above. In our case, the sym-
bols are N-bit codewords, generated by sampling (using the Shannon-Kotyelnyikov
sampling rule), uniformly quantizing and binary coding the speech signal. Thus
the number of symbols in the alphabet is K = 2N . The speech samples could thus
be considered as a symbol sequence from that finite alphabet. The discrete, finite
probability distributions, necessary for computing the generalised Jensen-Shannon
divergence could therefore be estimated by using the amplitude-histogram of time-
domain speech samples. The proposed algorithm is given below:
Input data: N bit integers (sampled, quantized and coded speech signal)
Alphabet: coded quantization levels
Distribution: amplitude, estimated with amplitude-histogram
Algorithm (batch mode):

do recursively
split speech sample sequence at n0 for LEFT and RIGHT

part
until suitable phoneme-duration constraints apply

As illustrations of the proposed method the generalised Jensen-Shannon divergence
contour has been computed for clean speech and noisy speech, uttered by a female
and a male speaker respectively. By examining the figures below, the segmentation
property of the algorithm is obviously apparent. On Figure 1. the spectrogram of
the Hungarian word [2:S], uttered by a female speaker, can be seen. The silence at
the beginning of the utterance, the very rich formant structure of the Hungarian
vowel [2:], the noise-like features of the fricative [S], and also the silence at the
end of the uttered word could be clearly marked using the spectrogram. Figure 2.
illustrates, that the local maxima of the Jensen-Shannon divergence contour could
also be used to mark the above mentioned sections of the utterance in question.

Figure 1: Spectrogram of the Hungarian word [2:S], female speaker
(sampled and edited using Adobe Audition 1.0)
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Figure 2: Hungarian word [2:S], female speaker (upper: JSD for
whole utterance, lower: uttered speech (8 kHz sampling rate,

8 bit linear PCM quantization))

On the Figure 3. the spectrogram of the utterance of the English word [wVn],
distorted by airplane noise, can be seen. Though it is not so easy, the endpoints
of the uttered word could be denoted using the spectral representation. However,
by considering the Figure 4., the local maxima of the Jensen-Shannon divergence
contour could also be used to separate the noise parts in the utterance. Figure 5.
illustrates the fact, that by applying the proposed algorithm, using the maximum
value of the Jensen-Shannon divergence contour, the starting phase of the noisy
utterance could also be detected.

Figure 3: Spectrogram of the English word [wVn], male speaker,
airplane noise (sampled and edited using Adobe Audition 1.0)
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Figure 4: English word [wVn], male speaker, airplane noise (upper:
JSD for whole utterance, lower: uttered speech (8 kHz sampling rate,

8 bit linear PCM quantization))
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Figure 5: English word [wVn], male speaker, airplane noise (upper:
JSD for left part of the utterance, lower: uttered speech (8 kHz

sampling rate, 8 bit linear PCM quantization))

4. Discussion

In this paper an algorithm has been proposed for segmenting speech sample se-
quences using the Jensen-Shannon divergence contour, and a time-domain speech
representation. The segmentation properties of the method have also been illus-
trated in detail.
The next step in further research is to elaborate the suitable stopping criteria using
the speech duration data, available in [14]. It is also important from point of view
of practical applications to develop the frame-by-frame processing version of the
algorithm, using the batch mode version, proposed in this article.
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