
6 th International Conference on Applied Informatics

Eger, Hungary, January 27–31, 2004.

The abilities and some possible extensions
of the Continuous Query Language

Antal Buza

Institute of Informatics, College of Dunaujvaros
e-mail: buza@mail.poliod.hu

Abstract

The CQL, Continuous Query Language is an expressive SQL-based declar-
ative language for registering continuous queries against streams and updat-
able relations. CQL is suitable for data stream queries. There are situations
when the queries operate on relational databases and on the data streams
simultaneously. The execution of CQL query takes a long time (it may be
several hours, days or even more). It is not unambiguous which semantic is
suitable for the user when the database is updated during the execution of
CQL query. For example, when we wish keep an eye on changing the value
of an account while the official rates are updated, then CQL system must
calculate with the retroactive effect of this update. Another semantic is rea-
soned when the prices are changed while we use CQL query for observing the
trade of a supermarket. In this case the effect of the update is valid from
the moment of update. In this paper we give a short description of CQL,
characterisation of update-problems, and we give possible suggestions for the
semantically extension of CQL.
Additional interesting question is the explanation of the consistent state. In
classical database theory it is an usually requirement that the “normal” state
of a database is the consistent state. The consistency is not a permanent
state, during the updates it may be damaged for a short time. Investigations
were performed to find out what the effect of the inconsistent state on the
currently operating CQL queries is.

Categories and Subject Descriptors: H.2.3 [Database Management]:
Languages – query languages; H.2.4 [Database Management]:Systems – query
processing

Key Words and Phrases: Database, data stream, query language, contin-
uous query

39



40 6 th International Conference on Applied Informatics

1. Introduction

In the section 2 we can find a short overview about Continuous Query Language.
The section 2 is based on [3] and [6]. In the section 3 we focus on the suggested
extensions of CQL. The extensions follow the effects of updates of databases realised
during the long execution of CQL queries. According to the real situations the
effects of the updates of databases are categorised in three types: the “retroactive
effect”, “from the update”, and the “strong” effect of update.

2. Introduction the continuous queries and the CQL

In this section we would like shortly introduce to the readers the continuous
queries and the Continuous Query Language i.e. CQL. We hope that this section
is useful for readers who are not familiar to CQL before. This section is based on
[3] and [6]. If you have knowledge about CQL you can jump to the section 3.

2.1. The continuous query

We consider that the continuous query which is issued once and then logically
run continuously over the database (in contrast to traditional one-time queries
which are run once to completion over the current data sets) and/or over the data
stream.

2.2. CQL - the Continuous Query Language

CQL is an expressive SQL-based declarative language for registering continuous
queries against streams and databases.

2.3. Illustrative CQL examples

Instead of the full description of CQL we cite some illustrative examples to
demonstrate the abilities of CQL. Consider the domain of network traffic manage-
ment for a large network. The network traffic management applications process
typically rapid, unpredictable and continuous data streams. In the following exam-
ples we observe the traffic generated streams PT c and PT b (packet traces collected
from the costumer and backbone links, respectively). For simplicity, we assume
that the packet header comprises the fields: saddr – IP address of packet sender,
daddr – IP address of packet destination, id – packet identification number, length
– length of the packet, timestamp – time when the packet header was recorded.

The first CQL example computes the load on the backbone link averaged over
one minute periods and notifies the network operator if the load exceeds a threshold
T.



A. Buza: The abilities and some possible extensions. . . 41

SELECT notifyoperator(sum(length)) FROM PTb

GROUP BY getminute(timestamp)
HAVING sum(length)> T

In the example the notifyoperator and the getminute are self-explanatory
functions. Similar functionality might be achievable using triggers in conventional
DBMS, but something conventional triggers are certainly not designed for.
The next example illustrates the finding of the fraction of traffic on the backbone
link coming from the customer network.

(SELECT count(*) FROM PTc AS C, PTb AS B
WHERE C.saddr=B.saddr AND C.daddr=B.daddr

AND C.id=B.id)
/
(SELECT count(*) FROM PTb)

This is an example of an ad-hoc continuous query. (Since unbounded interme-
diate storage could potentially be required for joining two continuous data streams,
we must use some kind of restrictions: time window or other, because of the answer
might be an approximate answer only.)
The third example monitors the top 5% source-to-destination pairs in terms of
traffic on the backbone link:

WITH load AS
(SELECT saddr, daddr, SUM(length) AS traffic

FROM PTb

GROUP BY saddr, daddr)
SELECT saddr, daddr, traffic

FROM load AS L1

WHERE (SELECT COUNT(*) FROM load AS L2

WHERE L2.traffic < L1.traffic) >
(SELECT 0.95*COUNT(*) FROM load)

ORDER BY traffic

As it was written in the abstract the continuous queries operate either on rela-
tional databases or on the data streams separated or on both simultaneously.

3. The update of databases produces different effects
on answer strategy of the CQL queries

In this section we present some different situations produced by update of data-
bases and their needed effects on the answer strategy of the CQL queries. We give



42 6 th International Conference on Applied Informatics

some suggested expansions of CQL for producing the useful answer according to
different situations.

Remind that the continuous query runs continuously for a long time. During
this long running time the database might be updated. How must the CQL query
for the event of update reflect?

3.1. The retroactive effect of the update

Let us see an example in the bank environment. We store the accounts in the
relation (RDBMS), several updates come through the stream(s) and we store the
rates in the relation “rates“. The rates may be changed during the execution of
the CQL query. In this case, when we use a continuous query for the actual sum
of the accounts in C= (or in $, or in any common value), we can calculate with the
retroactive effect of the update of rates relation. For example, we have an account
400£, and 1£=NC= , when the rate is changing, (the new rate is 1£=MC= ), as a
consequence the value of our account expressed via C= will change too, of course.

Figure 1. illustrates a situation like this. We store the accounts in relation ACC,
the rates are stored in relation RAT, the update records of the ACC relation comes
through the UPDS data stream. The continuous query was started at time t0, and
the relation RAT was updated at time tupd.

Figure 1: The effect of the update of RAT relation
is retroactive for the answer of CQL query

The suitable suggested extension of the CQL query is as follows: this query
summarizes the actual accounts (stored in ACC relation) expressed via Euro. The
query is sensitive to the update of the rates (RAT) relation.



A. Buza: The abilities and some possible extensions. . . 43

SELECT SUM(value*rate)
FROM (STREAM(ACC) CONTINUE UPDS)

NATURAL JOIN
UPDATE_RETRO(RAT)

In the example keyword STREAM produces stream from relation ACC, keyword
CONTINUE is an „ordered” UNION (e.g. in clausal FROM it is one stream, first part
of the stream consists of the rows of ACC relation at time t0, followed by the
stream records coming through the UPDS data stream). Keyword UPDATE_RETRO
indicates that when the relation RAT is updated the continuous query will be vir-
tually restarted (e.g. it rereads all relations and processes the stream from now).
The virtually restarted state of continuous query is illustrated in Figure 2.

Figure 2: The virtually restart of the UPD_RETRO type CQL query

In Figure 2. the tupd_last symbolizes the last update time of the RAT relation,
the tupd_next symbolizes the next update time of the RAT relation (in the future),
tupd_last < now < tupd_next. The virtually restart means that the query in the
moment of time tupd_last rereads the relation ACC and it uses only the new part
(produced after moment of time tupd_last) of the UPDS stream. The query reads
the RAT relation logically permanently. This is the theoretical operation of the
continuous query. In the practice when for example we have enough memory for
the store of the relation RAT, then the query don’t read continuously or repeatedly
this relation, one does only when the relation was updated.

3.2. The effect of the update “from now”

Another reasoned semantic of update is when the update produces an effect
only from the actual time (from the moment of the update) and in the future of



44 6 th International Conference on Applied Informatics

course. For example in the trade systems when the prices are changed and we
use the continuous query for determining the actual (daily, weekly, monthly,. . . )
income, we can calculate the effect of update only from now (from the moment of
update) and in the future (till the next update).

Let us see an example for cases like this. Figure 3. shows the environment of
the continuous query.

Figure 3: The environment of the continuous query
when the effect of the update belongs to the type “from now”

In Figure 3. the relation TRADE is the relation of the previous trade records,
in the relation PRICES we store the actual prices and through the data stream
APPENDS the new trade records come continuously. We can calculate the sum of
the weekly income using the following continuous query:

SELECT SUM(quantity*price)
FROM (STREAM (SELECT * FROM trade

WHERE week(tdate)=week(date))
CONTINUE appends)
NATURAL JOIN
ACTUAL(prices)

Where the keywords STREAM and CONTINUE are the same as in the previous
example, the keyword ACTUAL indicates that the query uses the actual state of the
relation (it is changeable during the execution of the continuous query).

This query calculates the weekly income of a supermarket, taking into account
the changes of the prices of the sailed items. The effects of the updates of the prices
valid from the time of the updates till the next updates.
The query execution system rereads the relation of prices repeatedly or when it



A. Buza: The abilities and some possible extensions. . . 45

detects the update of this relation, respectively. (It depends on the size of the
updated relation and the size of the usable memory.)

3.3. Strongly update-sensitive queries

The third strategy is that when the query is strongly sensitive for the update.
The query uses the original (i.e. contains of relation at the moment of starting
of the CQL query) contains of the relations. The execution of the continuous
query terminates when the content of those relation is changing. The query may
be restarted manually or automatically and it produces the new answer totally
independent of the previous answer.

To specify of that relation update of which causes the strongly sensitivity we
suggest the following form:

ORIGINAL(relation)

The keyword ORIGINAL indicates that the continuous query uses the original
content of the relation during the executions. The update of this relation must
cause the termination of the execution of the continuous query. As we already
discussed the query may be restarted automatically or manually.

The three semantics (“updatre_retro”, “actual”, and “original”) are not mutually
exclusive, it means that all versions may be used in the same query too.

3.4. About the accuracy of the answer and the inconsistency
state of the database

There are several reasons which cause inaccuracies in the answer. The inaccu-
racies cause not necessary that the usefulness of answer would be decreased. The
approximate answer may be suitable too.

It may happen that we lose a part of the data stream. From the time of
terminate of the query execution till the restart of the query execution we can or
cannot store and use the records from the data stream. It is one of the several
other reasons why the answer should be only approximate.

During the execution of the continuous query we must take a short break (in case
of UPDATE_RETRO the time-requirement of the virtually restart, in case of ACTUAL
the time-requirement of reread and in case of ORIGINAL the time-requirement of
restart). During the short break the partial lost of the stream may occur, especially
when the data stream is coming very fast. In cases when the losing a part of the
data stream would cause any essential problem we must avoid the problem by
saving and processing of that part of the stream(s).

Another interesting area is the inconsistency. In the classical database theory
it is an usually requirement that the “normal” state of a database is the consistent
state. The consistency is not a permanent state, during the updates it may be
damaged for a short time. The effect of the inconsistent state on the currently
operating CQL queries is the inaccuracy.



46 6 th International Conference on Applied Informatics

4. Conclusions

The continuous data streams are native data occurrences. Perhaps ones are
more native than the relations in lot of cases. Thus the using of the data streams
may have number of advantages. Therefore the expansion of CQL, since being
suitable for really situations might be useful. This is the reason for the paper
suggested a few expansions of CQL.

References
[1] Arvind Arasu and Shivnath Babu and Jennifer Widom: An abstract Semantics and

Concrete Language for Continuous Queries over Streams and Relations. Invited paper
in the DBPL (9th International Conference on Data Base Programming Languages)
workshop, September 2003.

[2] Arvind Arasu et al.: STREAM: The Stanford Stream Data Manager. IEEE Data
Engineering Bulletin, Vol. 26 No. 1, March 2003.

[3] Arvind Arasu and Shivnath Babu and Jennifer Widom: The CQL Continuous Query
Languag: Semantic Fundations and Query Execution. Proceedings of the 9th Interna-
tional Conference on Data Base Programming Languages (DBPL) September 2003.

[4] Rajeev Motwani et al.: Query Processing, Resource Management, and Approximation
in a Data Stream Management System. In Proc. of the 2003 Conf. on Innovative Data
Systems Research (CIDR), January 2003

[5] Shivnath Babu, Lakshminarayanan Subramanian and Jennifer Widom: A Data
Stream Management System for Network Traffic Management. In Proc. of the Work-
shop on Network-Related Data Management (NRDM 2001), May 2001

[6] Shivnath Babu and Jennifer Widom: Continuous Queries over Data Streams. SIG-
MOD Record, Sept. 2001

[7] Utkarsh Srivastava, Shivnath Babu and Jennifer Widom: Monitoring Stream Proper-
ties for Continuous Query Processing. In Proc. of the 2003 Workshop on Management
and Processing of Data Streams (MPDS 2003), June 2003

Postal address

Antal Buza
Institute of Informatics
College of Dunaujvaros
Tancsics utca 1/a
2400 Dunaujvaros
Hungary


