
6 th International Conference on Applied Informatics
Eger, Hungary, January 27–31, 2004.

Mobile agents for the database
management using Jini

Fabrice Mourlin, Jaouad Skaita

LACL University Paris 12, France
fabrice.mourlin@wanadoo.fr, skaita@univ-paris12.fr

Abstract
The management of large database application need complex strategies.

The use of mobile agents is powerful, and provides a reliable approach. The
Java language provides an ideal implementation platform, furnishing tools
that help streamline complex software applications. Java’s Jini framework
facilitates mobile agent application development, providing key features for
distributed network programming. We describe our technical approach of
the distributed database management using Jini framework as a foundation
for mobile agents. The presentation of this paper follows a step by step
presentation which is close to training. The example which is the kernel of
that work, can also be used as a base course on mobile programming course.
The subject of the case study is a collect of SQL statement on several hosts
on a local network which have to be applied onto a specific database.

1. Introduction

The concept of mobile agents is frequently used in today’s software appli-
cations—such that e-commerce to network management to data warehousing. Mo-
bile agent developers implement these solutions in Java language for several reasons:
First, Java’s built-in object-oriented language features are conducive to agent tech-
nology. Second, developers can be extremely productive using Java. Essentially,
Java provides tools that simplify and manage complex software development tasks.
Jini is one of Java APIs (Application Programming Interface) that allow design-
ers to build distributed applications easily. Our work introduces a mobile agent
framework based on the Jini architecture for the management of distributed data-
base. Jini (Java Intelligent Network Interface) provides a powerful set of packages
in a Java developer’s toolbox. It automates and abstracts distributed applica-
tions’ underlying details. These details include the low-level functionality (socket
communication, synchronization, and so on) necessary to implement the high-level
abstractions (such as service registration, discovery, and use) that Jini provides.

389

390 6 th International Conference on Applied Informatics

First we present what is an agent for our framework, and how its mobile features
are taken into account. Secondly, we describe the power of mobile agent and how
they move all around a network. Then we describe the service which are essential
to our mobile framework.

2. What is an Agents in our framework ?

Agent means a robot which possesses a high-level functionality (in UML, Unified
Modelling Language, it will be a use cas). Classically, the features of an agent are
identified depending on the application domain [1] which is concerned such as
intrusion detection, parallel computing, image rendering,or database management:

• Reactive : it receives stimuli and answer without any help,

• Autonomous : the most part of the resources are contained inside the agent
itself,

• Goal-oriented : in an agent oriented application, each of them has its own
goal or its own set of rules, it has to apply them to the node where it is,

• Temporally continuous: an agent is not a component which is waiting for a
new mission and managed by a server of components; but a piece of code
which answers continuously to its environment,

• Communicative: an agent can send data to another one and this data can be
a continuous flow,

• Intelligent: a precise strategy can be implemented in an agent depending on
the previous it did. Very often, a set of command is prepared and some of
them are assigned to agent: it is a kind of mission,

• Mobile: dynamically, an agent can navigate through a set of node in a large
network.

In the context of our work, we can consider an agent as a software entity that
exhibits some combination of the previous properties.

What can we use mobile agents for? Mobile agents come in a variety of flavors and
perform numerous functions:

• An information agent searches for information residing on remote nodes
and reports back to the source : it is used for computing a diagnostic,

• A computation agent seeks under used network resources to perform CPU-
intensive processing functions : it is powerful for a load balancing algorithm,

• A communication agent can send messages back and forth between clients
residing on various network nodes :

F. Mourlin, J. Skaita: Mobile agents for the database management using Jini 391

In our framework, the mobility is an essential skill and this is possible because
the agent are loosely coupled. All mobile agent in its mission consist of two main
components.

1. the mobile agents themselves; that are, entities with some job to do.

2. the mobile agent host(s), the service that provides the mobile agents’ execu-
tion platform.

In a distributed environment, we can have one-to-many agent hosts as well as
one-to-many agents. To be an active agent platform, a given node in the sys-
tem must have at least one active agent host. Figure 1 describes the framework
components.

Figure 1 : software architecture of our framework

This component scheme can be mapped easily to the Jini model. Jini, at the
highest level, provides the infrastructure that enables clients to discover and use
various services. Jini also provides a programming model for developers of Jini
clients and services. In the context of this mobile agent framework, the agent
host(s) provides Jini collect services. The mobile agent(s) is the Jini client. It can
have a lease for on particular node and this one can be modify during the action
of the agent. This collect service provides a set of SQL statements which have to
be executed later on a database.

Jini services register with one or more Jini lookup services by providing a ser-
vice proxy for perspective clients. In turn, clients query the lookup service(s) for
particular services, figure 2 depicts that process.

The first step in building an agent host is to create a remote interface, the
service template that agents will look for via the Jini lookup service. The
AgentHostRemoteInterface provides one method, acceptAgent(), which agents
call to travel to the implementing agent host:

392 6 th International Conference on Applied Informatics

Figure 2 : registration and discovery of services

Because a class can implement several interfaces, a same objects can publish
several interfaces, that means, provide multiple services. For instance, if we had
a distributed data warehouse, we might have an agent host that provides a local
data access service. In this instance, a data-mining agent might look for a host that
provides the data access service and move to that host to perform localized mining
operations. Therefore, we can have agents with different missions share hosts that
provide multiple services.

The second phase in building the agent host is to provide an implementation of
this remote interface that is the actual Jini service. The MobileAgentHost class
implements the AgentHostRemoteInterface.

F. Mourlin, J. Skaita: Mobile agents for the database management using Jini 393

Figure 3: class diagram for the description of a mobile agent host.

The class extends the UnicastRemoteObject class of the java.rmi.server
package, which allows clients to obtain a remote reference and call its methods
during a collect of data. The MobileAgentHost also implements the
ServiceIDListener interface, which is passed a unique ServiceID object via the
serviceIDNotify() method when the service first registers with a Jini lookup
service. The MobileAgentHost constructor is shown below:

394 6 th International Conference on Applied Informatics

This MobileAgentHost constructor saves the agentObject object reference
stored as member data and passed to arriving agents via the collect() method.
The constructor itself performs 2 mains functions :

1. it creates a LookupDiscoveryManager to locate a Jini lookup service(s).

2. it creates a JoinManager, with the LookupDiscoveryManager as a parameter,
to add this lookup service to the Jini service federation.

In the acceptAgent() method’s implementation, the MobileAgentHost binds
an incoming agent to an AgentThread: this is a way to keep autonomy for all the
agents

In turn, an inner class instance, AgentThread, is created to run the bounded
agent by calling its collect() method, passing the LookupDiscoveryManager and
agent object references. This collect() method contains the specific action the
agent has to do, it means operations on database using JDBC (Java DataBase
Connectitity)

In this implementation, a new thread is created for each arriving agent. It is
possible to enhance the implementation by binding incoming agents to an Agent-
Thread from a pre-existing thread pool.

3. How work the mobile agents

The construction of mobile agents. The 1st step in building an agent is to
create an interface for agents. For this, we create an AgentInterface that extends
the Serializable interface. The Serializable interface marks the class as a
serializable entity, or one that can be sent across the wire, this is essential for the
navigation through the network :

F. Mourlin, J. Skaita: Mobile agents for the database management using Jini 395

The AgentInterface consists of a collect() method that is called when an
agent arrives on a mobile agent host. This method takes 2 parameters:

1. a reference to the LookupDiscoveryManager maintained by the current host.
The agent uses this reference if it decides to look for new service providers,
such as when it wants to travel to a new mobile agent host for the next
management operation.

2. an dbRef parameter, which contains data necessary for the agent to complete
its action. For example, an agent that must communicate with other agents
currently residing on this host might be passed a collection of agent references.
A data-mining agent might be passed a reference to a local database.

An implementation of this interface is the abstract MobileAgent class. This
class’s constructor builds a service template that locates services of type
MobileAgentHostInterface. It also provides 3 additional methods:

• collect():to perform the task of gathering SQL statements, subclasses over-
ride the abstract collect() method. Each agent host has its own SQL files
with its own priorities, also, there is one sub class per kind of agent host.

• moveToRandomHost(): when the agent wants to move, subclasses call the
moveToRandomHost() method, which performs 3 steps:

1. gets a list of the currently available mobile agent hosts with a call to
getMobileAgentHosts().

2. randomly selects a host from the list of all the agent hosts, it is necessary
to visit.

3. moves to a new mobile agent host by calling the acceptAgent()method.
If the call on the selected host fails, select a new mobile agent host.

• getMobileAgentHosts(): to obtain a list of currently available agent hosts,
subclasses call the getMobileAgentHosts(). It requires the following steps
which is a classical JINI pattern:

1. Call getRegistrars() to obtain a current list of lookup services.
2. Iterate through each lookup service to find services that match the de-

sired template; in this case, AgentHostRemoteInterfaces. When the
task is complex or when the amount of data is quite important, it could
be useful to duplicates the same agent host registered with multiple
lookup services. The myMAHServiceTemplate object, a
ServiceTemplate class instance, passed to the lookup() method ini-
tialises in the MobileAgent constructor.

396 6 th International Conference on Applied Informatics

3. Add each matching service to a vector of AgentHostRemoteInterfaces.
This part is essential because it keep the track of all the move of agents
and then it is possible to visualize agent route map.

An interaction diagram can model the sequence of events between the
MobileAgent, MobileAgentHost, and the Jini lookup service which can be on a
computer far from the local network. All the error message are saved into a log file
which can be parsed in a post mortem analysis.

Figure 4: a scenario where the robot interacts with the lookup service

The final step in building the agent is the creation of a concrete mobile agent im-
plementation. We chose to implement a RouteMapAgent that extends MobileAgent.
This agent randomly travels to various agent hosts and logs its route via a Logger
object. In this implementation, the object passed to the collect() method by the

F. Mourlin, J. Skaita: Mobile agents for the database management using Jini 397

AgentHost is the local hostname. The agent records this name in its route map.
Figure 5 describes the RouteMapAgent class diagram.
RouteMapAgent’s collect() method, called when an agent turn up at a host, is
implemented as follows:

1. Display the route taken to get to this host :this history operation allows the
agent to decide what it has to do (to continue or to ask for some help),

2. After realized its own action, record the current host in the route table. It is
important to mark all the location, where an agent is already gone,

3. Search for and travel to a new agent host with a call to moveToRandomHost()
or directly to database host for a first update.

Figure 5: class diagram of the structure of the RouteMapAgent class

We illustrate these several steps with the code a the collect method:

398 6 th International Conference on Applied Informatics

The RouteMapAgent performs a additional simple task. Alternate extensions of
the MobileAgent class, it could provide more complex functionality.
The RouteMapAgent possesses several properties :

1. it is autonomous:

2. it is completely independent, coming and going as it pleases.

3. it controls its own actions by choosing where and when to move.

4. the agent is clearly goal-oriented. Its duty: execute the import of SQL orders
into its bag, travel to various hosts and record its route.

5. the agent is temporally continuous, that is, a constantly running entity.

6. it is mobile, moving among various hosts in the network.

This agent clearly depends on the services which are available on the mobile
agent host, but it does have the communicative property because the agent displays
its route upon arrival at each host. Essentially, this agent talks, but cannot listen
to.
Sometimes an agent might wish to specify a destination host, at the end of its travel
for instance, when it has to go to the database front host. In this scenario, you can
modify the MobileAgentHost to register its service and a corresponding globally

F. Mourlin, J. Skaita: Mobile agents for the database management using Jini 399

unique name. This is a modification of the getMobileAgentHosts() method to
return a name/service template pair that each agent can select from.

4. A mobile framework

The most difficult part is always the deployment, because it depends on the
current state of the services which are not only used by our application but also
by all the code which take mobility as a basic feature [2], [3].
First it is essential to insure that all the source code are clearly separated from
the bytecode files. If not, it involves some side effect such that new compilation of
source code or set up of environment variables. We can divide the synopsis of a
scenario into the following steps [4]:

1. We create 2 directories (MobileAgent and AgentHost) for the respective
source codes of mobile agent and agent host .java files. To resolve compile-
time dependencies, you must include the interfaces in both directories:

AgentHost

AgentHostRemoteInterface.java

AgentInterface.java

MobileAgent.java

RouteMapAgent.java

StartAgent.java

AgentInterface.java

AgentHostRemoteInterface.java

MobileAgentHost.java

StartAgentHost.java

AgentHost

Source

2. We define 2 environment variables called, AGENT_DIR corresponds to the ab-
solute path of the agent directory you created. The AGENT_HOST_DIR corre-
sponds to the agent host directory’s absolute path.

3. Then we compile the Java files in the agent directory, where JINI_HOME is set
to the Jini distribution’s top-level directory : Jini 2.0:

400 6 th International Conference on Applied Informatics

javac -classpath %JINI_HOME%/lib/jini-core.jar;%JINI_HOME%/lib/
jini-ext.jar;

%JINI_HOME%/lib/sun-util.jar;%AGENT_DIR% -d..\..\..\
Class *.java

4. Then we compile the Java files in the agent host directory:

javac -classpath %JINI_HOME%/lib/jini-core.jar;%JINI_HOME%/lib/
jini-ext.jar;

%JINI_HOME%/lib/sun-util.jar;%AGENT_HOST_DIR% -d..\
..\..\Class *.java

5. We create the rmi stub for the MobileAgentHost service:

rmic -v1.2 -classpath %JINI_HOME%/lib/jini-core.jar;%JINI_HOME%/lib/
jini-ext.jar;
%JINI_HOME%/lib/sun-util.jar;%AGENT_HOST_DIR%

-d %AGENT_HOST_DIR% MobileAgentHost

6. Several services have to be launched such that an HTTP server for clients to
download Jini class files on the node where the Jini lookup service will run:

java -jar %JINI_HOME%/lib/tools.jar -port 8081 -dir %JINI_HOME%/lib
-verbose&

7. We start an HTTP server that will provide the agent class files; this server
must start on every node in which an agent initializes:

java -jar %JINI_HOME%/lib/tools.jar -port 8082 -dir %AGENT_DIR%
-verbose&

8. Then we start an HTTP server that will provide the agent host class files;
this server starts on every node in which an agent host runs:

java -jar %JINI_HOME%/lib/tools.jar -port 8083 -dir %AGENT_HOST_DIR%
-verbose&

9. We start the RMI (Remote Method Invocation) activation daemon:

rmid -J-Djava.security.policy=%AGENT_HOST_DIR%/policy.all&

10. Then we start the Jini lookup service. Note that because Jini uses multicast
for discovery, your network must therefore support it too. Also note that the
policy file specified is wide open (no restrictions) which certain applications
might not permit:

F. Mourlin, J. Skaita: Mobile agents for the database management using Jini 401

java -Djava.security.policy=%JINI_HOME%/example/lookup/policy.all
-jar %JINI_HOME%/lib/reggie.jar http://localhost:8081/reggie

-dl.jar
%JINI_HOME%/example/lookup/policy.all /tmp/
reggie_log public&

The hostname parameter, localhost, in my case, is the name of the server
machine on which the Jini HTTP server started. The final parameter,
/tmp/reggie_log, is a directory for the lookup service log files.

11. Start one or more MobileAgentHosts. Execute this command for each host:

java -Djava.security.policy=%AGENT_HOST_DIR%/policy.all
-classpath %JINI_HOME%/lib/jini-core.jar;%JINI_HOME%/lib/jini

-ext.jar;
%JINI_HOME%/lib/sun-util.jar;%AGENT_HOST_DIR%

-Djava.rmi.server.codebase=http://localhost:8083/ StartAgentHost
myHostName

The hostname parameter, localhost, in my case, is the name of the server
machine on which the agent host HTTP server started; don’t confuse the
agent and agent host port numbers. The myHostName is a command-line
parameter you can use to name the host whatever you like, which proves
useful if you start multiple host processes on the same machine.

12. Start one or more RouteMapAgents. Execute this command for each agent:

java -Djava.security.policy=%AGENT_DIR%/policy.all
-classpath %JINI_HOME%/lib/jini-core.jar;%JINI_HOME%/lib/jini

-ext.jar;
%JINI_HOME%/lib/sun-util.jar;%AGENT_HOST_DIR%

-Djava.rmi.server.codebase =http://localhost:8082/ StartAgent
myHostName

The hostname parameter, localhost, in my case, is the name of the server
machine on which the agent HTTP server started. The myHostName is a
command-line parameter you can use to name this particular agent whatever
you like.

When we work on a single node, start several MobileAgentHosts (one per
process/JVM). If there is an access to a distributed network, we can start an agent
host on each node. After starting several hosts, we start a RouteMapAgent. We
should be able to watch the agent bounce randomly among the various hosts by
examining RouteMapAgent’s output as it arrives at each host.

402 6 th International Conference on Applied Informatics

Conclusion
Mobile agents play an ever-increasing role in today’s advanced software sys-

tems. With the advent of distributed computing and the power and flexibility
it provides, complexity is at the forefront. You can incorporate Jini to mitigate
complexity; it encapsulates the underlying functionality (sockets, messaging pro-
tocols, synchronization issues, fault tolerance, and so on) required for a successful
distributed application. We like using Jini because We have less networking code
to debug and hence am more productive because we can develop distributed appli-
cations faster. We can adhere to a flexible client-service model, concentrating my
efforts on providing services and/or clients that use those services. Jini provides a
powerful tool for distributed applications and maps quite nicely to a mobile agent
architecture.

References
[1] David Kotz and Robert S. Gray, ACM Operating Systems Review, 33(3), August 1999,

pages 7-13. It is an update of a position paper that appeared at the Workshop Mo-
bile Agents in the Context of Competition and Cooperation (MAC3) at Autonomous
Agents, May 1, 1999, in Seattle, Washington, USA.

[2] Joshua Fox’s "Deploy Code Servers in Jini Systems"(JavaWorld, December 2001)
[3] Robert Flenner “Jini and Javaspaces application development”, SAMS (September

2002)
[4] Scott Oaks « Jini in a Nutshell: A Desktop Quick Reference”, Software Development,

Computer Programming, Software Developer Books (2001)

