
6 th International Conference on Applied Informatics

Eger, Hungary, January 27–31, 2004.

Synthesis of the synchronization of
pipeline systems

Balázs Ugrona, Szabolcs Hajdarab

aDepartment of Software Technology and Methodology,
Eötvös Loránd University
e-mail: balee@inf.elte.hu

bDepartment of Software Technology and Methodology,
Eötvös Loránd University
e-mail: sleet@inf.elte.hu

Abstract

The pipeline systems and different subtypes of pipelines are interesting
parts of parallel systems in software engineering. That is why it seems to be
worth to deal with the possibilities of the specification of the synchronization
of these systems.

Different methods exist that can be used to synthesize the synchronization
of parallel systems based on some kind of specification, but these methods
can not be applied directly for pipeline systems, because of some special
properties of the pipeline systems, and the methods themselves.

The method that seems to be the most promising is the method of Attie
and Emerson, which is a synthetization method for many similar processes
based on a special temporal logic specification.

In this paper we give an extension for this method, so that the extended
method is able to handle more properties of parallel systems, especially of
pipeline systems. Furthermore, we give an abstract synchronization of the
linear pipeline system.

Categories and Subject Descriptors: D.2.1 [Software engineering]: Re-
quirements specification; F.3.1 [Logic and Meanings of Programs]: Specifying
and Verifying and Reasoning about Programs – assertions, invariants; F.4.1
[Mathematical Logic]: Temporal logic.

Key Words and Phrases: semantic tableaux, pipeline, synthesis, parallel
systems, temporal logic.

351

352 6 th International Conference on Applied Informatics

1. Introduction

In the following, we will consider the synchronization possibilities of a special
part of parallel systems, the pipeline system. As usual (see [1], [2]), we consider
only the synchronization part of the processes, because the real computation code
usually can be separated from the synchronization part of parallel systems.

A pipeline system is a parallel system of processes, which is built in order to solve
some problem. The processes in the system are aligned to a row by the connections
between them, so every process in the system has exactly two connections, except
the first and the last processes, which have only one. The processes between the
two ends work on similar tasks, so their synchronization are obviously similar, too.

There are methods in the literature, which can be used to synthesize the syn-
chronization part of a system from temporal logic specification, but these methods
can not be directly applied in this case. For example, the method of Emerson and
Clark [1] suffers from the so called state explosion problem [2], so it can not be
applied for a large number of processes, in pratice. Another example is the method
of Attie and Emerson [2] which can handle large systems, but this method can be
only used for systems consisting many similar processes, and this is not that case.

In this article, after a short description of the synchronization of many similar
processes [2], we will introduce an extension of the method, with which it will be
possible to handle the case of pipeline systems, too.

2. Synthesis of many similar processes

In this section we look over the parts in Attie and Emerson’s paper [2] that
are most important to understand this paper. The reader will generally find only
informal definitions in this section, the exact definitions can be found in [2].

At first, Attie and Emerson’s method specifies, that the processes must be
similar. In this case, similarity means that any two processes can be exchanged
with each other, except their indexes. This restriction is used many times in the
method.

2.1. CTL*

The specification language is an extension of the temporal logic CTL* which
is a propositional branching-time temporal logic. The basic modalities of CTL*
consist of a path quantifier, either A (for all paths) or E (for some path) followed
by a linear-time formula, which is built up from atomic propositions, the Boolean
operators ∧, ∨, ¬, and the linear-time modalities G (always), F (sometime), Xj

(strong nexttime), Yj (weak nexttime) and U (until). CTL* formulas are built up
from atomic propositions, the Boolean operators ∧, ∨, ¬, and the basic modalities.

Let us consider the intuitive meaning of the formulas mentioned above. For-
mula Ef means that there is some maximal path for which f holds; formula Af
means that f holds of every maximal path; formula Xjf means that the immediate

B. Ugron, Sz. Hajdara: Synthesis of the synchronization of pipeline systems 353

successor state along the maximal path under consideration is reached by executing
one step of process Pj , and formula f holds in that state; formula fUg means that
there is some state along the maximal path under consideration where g holds, and
f holds at every state along this path at least the previous state.

The usual abbrevations for logical disjunction, implication and equivalence can
be introduced easily. Furthermore, some additional modalities as abbrevations can
be introduced: Yjf for ¬Xj¬f , Ff for trueUf , Gf for ¬F¬f .

The reader can find the formal definition of the semantics of CTL* formulas in
[2].

2.2. The interconnection relation

The interconnection scheme between processes is given by the interconnection
relation I. I ⊆ {i1, . . . , iK} × {i1, . . . , iK}, and i I j iff processes i and j are
interconnected. I is symmetric and irreflexive relation.

Those process pairs, that are in the interconnection relation, will be synchro-
nized with each other, and the others will not. This means, that the behaviour
of the system can be simply changed by the interconnection relation. For exam-
ple, the synchronization of the eating philosophers problem is the same as for the
standard mutual exclusion problem – except the interconneciton relation.

2.3. MPCTL*

An MPCTL* (Many-Process CTL*) formula consists of a spatial modality fol-
lowed by a CTL* state formula. A spatial modality is of the form

∧
i or

∧
ij .

∧
i

quantifies the process index i which ranges over {i1, . . . , iK}. ∧
ij quantifies the

process indexes i, j which range over the elements of I.
The definition of truth in structureM at state s of formula q is given byM, s |= q

iff M, s |= q′ where q′ is the CTL* formula obtained from q by viewing q as an
abbrevation and expanding it like

• M, s |= ∧
i fi iff ∀i ∈ {i1, . . . , iK} : M, s |= fi

• M, s |= ∧
ij fij iff ∀i ∈ I : M, s |= fij

2.4. The method

In this section, we give an extremely short informal description of the synthesis
method of Attie and Emerson, which will be informative enough to catch the point,
though.

At first, the behaviour of the system needs to be specified in the above described
temporal logic language, MPCTL*. This specification is applied to an arbitrary
process or process pair from the system.

Any known method (for example the one described in [1]) can be used to syn-
thetize the synchronization skeleton of an arbitrary process pair from the system.

354 6 th International Conference on Applied Informatics

Then the method takes advantage of the fact that the processes in the system
are similar, and produces a global synchronization skeleton for the whole system,
based on the skeleton synthesized for the pair system.

3. Synthesis of a pipeline system

Our main goal in this paper is to develop a method, with which the synchro-
nization skeleton of a pipeline system can be synthetized. The method of Attie and
Emerson which we roughly described above, can not be applied direcly in the case
of a pipeline system.

The first reason is, that the processes in a pipeline system are not similar.
Although the processes except the first and the last one of the pipeline are similar,
the mentioned two processes differ from them.

The second reason is, that the communication in a pipeline system has a di-
rection – from the start of the pipeline to the end. This method does not provide
facilities to distinguish the processes even in the specification, so we can not handle
directions, so the synthetized synchronization code will not be efficient.

At first, we give an extension for the method, with which the side processes
can be handled, too. We introduce one more abstraction level in the method: we
separate the processes inside the pipeline from the two processes at the ends, and
handle them as an embedded system, and synthetize the synchronization for them.
After that, we handle the embedded system as a part of new system, besides the
two processes at the ends of the pipeline.

3.1. The embedded system

At first we give a straightforward solution for the synchronization of the pre-
viously mentioned embedded system in the pipeline. This is a very inefficient ap-
proach, but in this case, the method of Attie and Emerson can be applied directly.
In fact, this is the solution of the standard mutual exclusion problem.

In this case, the processes will have three states, a normal (N), a trying (T)
and a critical (C) state. A process steps in its trying state, when it wants to go
to the critical state, and two interconnected processes cannot be in their critical
state at the same time. The processes do the communication (data receiving and
passing) and the real computation, too, in the critical state.

The synchronization skeleton for such a system is deduced in [2]. The resulted
automata can be seen in figure 1.

As we said, this approach is extremely inefficient, because the neighbors of a
process can not do anything, while the process is in critical state, although theoreti-
cally they would be able to do the computational part of their work simultaneously.

A much better approach will be shown later, in section 3.2.

B. Ugron, Sz. Hajdara: Synthesis of the synchronization of pipeline systems 355

Ci Ni Ti

⊗j∈I(i)(Tj
� xij := j ⊕

Nj ∨ Cj
� skip)

⊗j∈I(i)(Nj ∨ (Tj ∧ xij = i) � skip)

⊗j∈I(i)(true � skip)

Figure 1: Synchronization skeleton of the embedded system

3.2. Another approach for the embedded system

We gave an inefficient solution for the embedded system in section 3.1. We
introduce a better approach in this section.

As we found out, the main problem in the synthetization of this part of the sys-
tem is that the method does not allow us to make a distinction between processes,
and so we can not express the direction of the communication, so the result will be
inefficient.

To get over this issue, we introduce a new definition for the spatial operators
defined by Attie and Emerson – or we can say, we define two new spatial operators.

The original definition of the spatial operators can be found in section 2.3. We
add a ρ predicate parameter to the spatial operators:

• M, s |= ∧
i(ρ)fi iff ∀i ∈ {i1, . . . , iK} : ρ → M, s |= fi

• M, s |= ∧
ij(ρ)fij iff ∀i ∈ I : ρ → M, s |= fij

This definition intuitively means, that a connection between two processes, that
is defined in the interconnection relation may be actual or non actual in different
situations, and the actuality of the interconnection is driven by the predicate ρ.

For the sake of effectiveness, there are two critical sections for every process
in this approach, a critical section for reading the data from the previous process,
and another one for sending the data to the next process. Moreover, there will
be a sent and a received state for each process, because the communication works
through shared variables, and the flow of the communication should be driven by
the synchonization.

So, the processes will have many states: N (normal), T (try to read), R (read),
C (check), W (work), E (try to send), S (send) and finally A (after send). The two
critical states are R and S, and the restriction is, that if a process is in its state S,
then the following process must not be in its state R, and vice versa.

Let us see, what happens in the states. State N is the start state of every
process. State T is a trying state before the R critical section, that is for reading.
State C is a checkpoint after the reading. State W is the state in which the
process does its real computation work. State E is a trying state before the S

356 6 th International Conference on Applied Informatics

critical section, that is for sending. Finally state A is another checkpoint, now
after sending.

Let us see some formulas from the temporal logic specification of the synchro-
nization of the embedded system, in which the parametrized spatial operators are
used.

• ∧
i AG(Ci ⇒ (AYiWi)) that is, any move of process i from its state C leads

to state W .

• ∧
ij(j < i)AG(CiU¬Aj) that is, process i can move from its state C to its

state W only if every process j which is interconnected with process i and
j < i is not in its state A, and such a move is possible some time.

The finite deterministic automata resulted by the method can be seen in figure
2.

Let us notice, that in the case of this synchronization, nothing stops a process
from working – that is, stepping in its state W – while the neighbors are working,
so in this case, the processes can really work in parallel.

⊗j∈I(i)(true � skip)

Ni Ti Ri Ci

Ai Si Ei Wi

⊗j∈I(i,j<i)(Aj � skip)

⊗j∈I(i)(true � skip)

⊗j∈I(i, j<i)(¬Aj � skip)

⊗j∈I(i)(true � skip)

⊗j∈I(i, j>i)(¬Cj � skip)

⊗j∈I(i)(true � skip)

⊗j∈I(i, j>i)(Cj � skip)

Figure 2: Improved synchronization skeleton of the embedded system

3.3. The new three-process sytem

The ends of the pipeline must be handled in a special way. At the two ends of
the pipeline there are two processes that are connected to only one other process
from the pipeline and to a special process. The first process is connected to a
sender process and the last process communicates with a receiver process. For the
sake of simplicity, let us assume, that the sender process only produces the data
and passes on to the first process in the embedded system. Similary, the receiver
process only picks up the processed data from the last process in the embedded
system and then works with that.

We can look at this set of processes as a system composed by three processes.
The first process is the sender, the second is the embedded system and the third is

B. Ugron, Sz. Hajdara: Synthesis of the synchronization of pipeline systems 357

the receiver process. We have to give the synchronization skeleton of this system.
This system has only three processes, so we can handle it with the method of
Emerson and Clarke [1], without running into the state explosion problem.

There is one more subject, that we have to discuss. The middle process in
this system is a system of processes itself, so the specification of our three-process
system is quite difficult, because we should not just say for example, that the
pseudo process has a state for reading data, because this means in fact, that the
first process of the pseudo process reads the data, and at the same time, the last
process theoretically can send data, which means that the whole pseudo process
sends data to the receiver process, too. This means, that the pseudo process would
be in two states at the same time, which is not allowed.

We give two solutions for this issue.
The first solution is that we handle the pseudo process as two processes – and in

this case, we have a four-process system instead of a three-process one, of course –
which are independent in the four-process system, and one of them is connected to
the sender process, and the other is connected to the receiver. This is a reasonable
approach, because there is a hidden connection between the two pseudo processes,
and this connection is handled by the synchronization of the embedded system.

The second approach is to define the states of the embedded system as pairs,
so we will have such state pairs like (N,N), (N,S), (R,S) and so on. For example
(N,N) means that the embedded system does not read or send data, while (N,S)
means that the system does not read, but sends data and (R,S) means that the
system reads and sends data at the same time. With such a type of set of states,
we can express the behaviour of the system in a quite efficient way.

The second approach is more complicated than the first one (because of the
large number of the states of the system), so we chose the first approach for the
solution. We show only the connection between the sender process and the embed-
ded system. The synchronization of the embedded system and the receiver process
can be deduced similarly.

The states of the sender process are:

J: normal (working) state,

K: try to send state,

L: sending state,

M: after sending state.

Using these states we can give the temporal logic specification of the system.
For the specification, CTL* was used. Based on this specification, we are able
to generate the synchronization skeleton of the system. We used the synthetiza-
tion method of Emerson and Clarke. The synchronization skeleton for the sender
process and the first pseudo process of the embedded system can be seen in figure
3. Finally, the synchronization skeleton of the first and the last processes of the
embedded system must be modified properly based on the result in figure 3 – the

358 6 th International Conference on Applied Informatics

transition conditions of the first process of the embedded system will be the con-
junction of the original conditions, and the conditions in the proper transitions of
the synchronization of the sender process and the pseudo embedded system – see
in figure 4. The new transition conditions for the last process of the embedded
system can be deduced similarly.

true � skip
 J K L M

T � skip

true � skip

C � skip

true � skip

 N T R C

M � skip

true � skip

¬M� skip

Figure 3: Synchronization skeleton for the sender process and the embedded system

⊗j∈I(1)(true � skip)

N1 T1 R1 C1

A1 S1 E1 W1

M ∧ ⊗j∈I(1,j<1)(Aj � skip)

⊗j∈I(1)(true � skip)

¬M ∧ ⊗j∈I(1, j<1)(¬Aj � skip)

⊗j∈I(1)(true � skip)

⊗j∈I(1, j>1)(¬Cj � skip)

⊗j∈I(1)(true � skip)

⊗j∈I(1, j>1)(Cj � skip)

Figure 4: The modified synchronization skeleton for the first pocess of
the embedded system

4. Future work

The idea for synthetizing the synchronization of pipeline systems comes from
hardware designing of graphics cards. We should try to meet these demands.

We should consider the possibilities of using this method in more complicated
process or processor networks, for example in the case of hypercube or butterfly
networks.

B. Ugron, Sz. Hajdara: Synthesis of the synchronization of pipeline systems 359

Moreover, a software should be developed, with which the synchronization skele-
tons can be synthetsized from the specification automatically.

References
[1] E. A. Emerson & E. M. Clarke: Using branching time temporal logic to synthesize

synchronization skeletons, Science of Computer Programming, 2 (1982), pp. 241 - 266
[2] P. C. Attie & E. A. Emerson: Synthesis of Concurrent Systems with Many Similar

Processes, ACM TOPLAS Vol. 20, No. 1, (January 1998) pp. 51-115
[3] Sz. Hajdara, L. Kozma and B. Ugron: Synthesis of a system composed by many similar

objects, Annales Univ. Sci. Budapest., Sect. Comp. 22 (2003)
[4] Sz. Hajdara, B. Ugron: An Example of generating the synchronization code of a system

composed by many similar objects, 17th European Conference on Object-Oriented
Programming (ECOOP), The 13th Workshop for PhD Students in Object-Oriented
Systems (2003)

[5] Z. Hernyák, Z. Horváth, V. Zsók: Clean-CORBA Interface Supporting Skeletons, In-
ternational Conference on Applied Informatics, Eger 2004

[6] L. Kozma: A transformation of strongly correct concurrent programs, Proc. of the
Third Hungarian Computer Science Conference 1981, 157-170

Postal addresses

Balázs Ugron
Dep. of Software Technology
and Methodology
Eötvös Loránd University
XI. Pázmány P. sét. 1/c.
H-1117 Budapest, Hungary

Szabolcs Hajdara
Dep. of Software Technology
and Methodology
Eötvös Loránd University
XI. Pázmány P. sét. 1/c.
H-1117 Budapest, Hungary

