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Abstract

We study the proportions of financial assets in optimal portfolios, where
the portfolio is optimized by the maximization of expected utility. Our main
goal is to investigate the magnitude of the proportions provided that the
assets’ distributions display a certain type of stochastic dominance. Our
main question: “Why people buy more of an asset than of another one?” We
introduce and study new notions of stochastic dominance. We derive new
versions and generalizations of the results of Hadar and Seo (1988). Our
results apply to not necessarily independent returns as well. We give several
examples.
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1. Introduction and notations

A widely studied area of econometrics is the problem of finding optimal port-
folios under uncertainty. The basic setup is the following: we are given a market
with financial assets and a certain capital to be invested. Now, many approaches
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are known on how to invest our capital. In this paper we study the expected utility
approach, i.e. the possible portfolios are ordered according to the expected utility
of their future value, and thus an optimal portfolio (‘best allocation’ of our money)
can be taken.

The different notions of stochastic dominance provide tools to compare the
future value and the riskiness of financial assets. Now, one can formulate the main
questions of the paper generally as follows: ”What conditions lead the investors to
invest more in an asset than in another one?” and ”How are the proportions of the
financial assets in the optimal portfolios related to the riskiness of the assets?”

To put the questions in a more precise way, we first summarize some notations
and fundamental results in literature.

Securities market. Let us consider a securities market where the individuals
are trying to invest their money and thus to create their portfolio by allocating
their money among the different financial assets available in the market. We shall
suppose that the number of assets is finite, say n. Now the market is modeled by
a set

{r1, r2, . . . , rn},
where ri is a random variable, with property P(−1 ≤ ri) = 1 (i = 1, . . . , n),
representing the rate of return of stock i at some future time point T . We assume
that the individual does not intend to reallocate the portfolio before T , hence the
ri’s contain all the information available on the market at the time of the investment
decision. Put Xi = 1 + ri for i = 1, . . . , n.

Portfolios. A portfolio will be denoted by

π = (β1, β2, . . . , βn), (βi ∈ R),
where βi is the amount of money invested in asset i. Let X0 > 0 be the initial
capital to be invested by the individual. Denote the value of portfolio π at time T
by Xπ

T . Thus,

Xπ
T =

n∑

i=1

βi(1 + ri) =

n∑

i=1

βiXi,

where
∑n

i=1 βi = X0.
Now, the individuals are supposed to perform rationally in the market and thus

to choose the optimal portfolio according to their preferences. The individual’s
preferences shall be given by his or her utility function U . Thus, we shall call a
portfolio optimal if it is promising the largest possibly expected utility. Here we
mention that it is just one of the several definitions for optimality of the portfolio
known in literature. (For this and other approaches see e.g. Huang and Litzen-
berger (1988), Ingersoll (1987) or Korn (1998).)

In other words, we shall call a portfolio optimal and denote it by

π∗
U = (β∗

1,U , β
∗
2,U , . . . , β

∗
n,U ) (1)

if
E U

(
X

π∗
U

T

)
= sup

π∈CX0

E U (Xπ
T ) , (2)
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where CX0
is the set of portfolios which can be set up from initial capital X0, i.e.

CX0 =

{
π

∣∣∣∣∣ π = (β1, β2, . . . , βn) ∈ Rn,

n∑

i=1

βi = X0

}
.

Note that no selling or buying restrictions are imposed (π ∈ Rn). If it does not
cause any misunderstanding, we will omit to indicate the utility function U in the
solution (1).

We shall suppose in the paper that X0 = 1. In fact, this assumption does not
lead to any loss of generality. Indeed, given X0 and a utility function U , one can
reformulate the problem of maximizing EU(Xπ

T ) as follows. Define Ū(x) = U(X0x)
(x ∈ R) and then maximize EŪ(Xπ

T ) provided that the initial capital is 1. If we
have a solution (β∗

1,Ū
, . . . , β∗

n,Ū
) of this problem then (X0β

∗
1,Ū

, . . . , X0β
∗
n,Ū

) is a
solution of the original problem.

Hence, given the assumption X0 = 1 we can consider the value βi as the pro-
portion of asset i in the portfolio.

Stochastic dominance versus proportions. In this paper our main focus is on
investigating the features of securities which lead the individuals to invest more in
an asset than in another one.

For this we discuss the relations between stochastic dominance and the propor-
tions of the asset. The notion of stochastic dominance between the returns of the
financial assets shall be used to express that an asset is better or less risky —in a
certain sense— than another one. Now, it would be natural to claim risk averse
investors to invest more of the less risky asset. However, easy counter-examples
can be given (see e.g. Hadar and Seo (1988), Huang and Litzenberger (1988)).
Therefore, our main purpose is to derive conditions —especially for dependently
distributed asset price returns— under which more money will be invested in the
less risky asset, indeed.

Take first the example where in a two-securities market {r1, r2}, the distribution
of the rate of return of the first asset displays first order stochastic dominance over
the second one. It is known that under this condition an individual —even if he
is risk averse, e.g. he has concave utility function (see Huang and Litzenberger
(1988))— shall not necessarily invest more in asset one than in asset two (see
Hadar and Seo (1988)). Hadar and Seo have shown (Theorem 4, Hadar and Seo
(1988)) that for risk averse individuals with nondecreasing utility function U the
following two statements are equivalent:

(1) β∗
1 ≥ β∗

2 for each independent r1 and r2 with r1 <FSD r2,

(2) the function x 7→ xU ′(x) is nondecreasing over its domain,

where r1 <FSD r2 denotes that r1 displays first order stochastic dominance over
r2.

There remains, however, the question of the dependent case in the problem
considered by Hadar and Seo which is the subject of our next results. For this, first
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we introduce a new notion of stochastic dominance which is one way to represent
the dependence of the rates of return of the assets.

We shall also consider the problem at issue for other types of stochastic domi-
nance and for the case of more than two assets.

2. A strong version of the first order stochastic dom-
inance

Next, we introduce a new notion of stochastic dominance.
Given a random variable ξ, the measure Pξ will denote its distribution.

Definition 3. The random variable ξ is said to display strong first order stochastic
dominance (SFSD) over the random variable η, which is denoted by ξ <SFSD η,
if Fξ|η(x|y) ≤ Fη(x) for all x ∈ R and Pη-a.e. y ∈ R, where Fη is the distribution
function of η and Fξ|η is a regular conditional distribution function of ξ given η.

Secondly, strong second order stochastic dominance (SSSD) of ξ over η is defined
by

∫ x

−∞
[
Fξ|η(u|y)− Fη(u)

]
du ≤ 0 for all x ∈ R and y ∈ R. Notation: ξ <SSSD

η.
Given random variables ξ1, ξ2, . . . , ξn, n > 2, we say that ξ1 conditionally dom-

inates ξ2 in the sense of strong first order stochastic dominance, and we write
ξ1|ξ3, . . . , ξn <SFSD ξ2|ξ3, . . . , ξn, if Fξ1|ξ2,...,ξn(x|x2, . . . , xn) ≤
Fξ2|ξ3,...,ξn(x|x3, . . . , xn) for all x ∈ R and Pξ2,...,ξn -a.e. (x2, . . . , xn) ∈ Rn−1, where
Fξ1|ξ2,...,ξn and Fξ2|ξ3,...,ξn are regular conditional distribution functions.

In the definition we use regular conditional distributions. One can find the
definition of regularity e.g. in Shiryaev (1984)

Now, we summarize some easy properties of SFSD.

Theorem 1 (Some features of SFSD).

(i) For any r.v.’s ξ and η, ξ <SFSD η implies ξ <FSD η.

(ii) If ξ and η are independent r.v.’s then ξ <SFSD η is equivalent with ξ <FSD η.

(iii) For any random variables ξ and η, ξ <SFSD η holds if and only if we have
E (g(ξ)|η) ≥ Eg(η) a.s. for all nondecreasing function g : R→ R.

Proof.
(i) Let Pη be the distribution of η. Now, notice that for any x ∈ R

∫

R
Fξ|η(x|y) Pη(dy) =

∫

R
P (ξ < x|η = y) Pη(dy) = P(ξ < x) = Fξ(x). (4)

Hence, Fξ|η(x|y) ≤ Fη(x), x ∈ R, Pη-a.s. y ∈ R, together with (4) implies Fξ(x) ≤
Fη(x), which is equivalent with ξ <FSD η (see 1.A.1. in Shaked and Shanthikumar
(1994)).
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(ii) By the independence of the r.v.’s. we have Fξ|η(x|y) = Fξ(x) for x ∈ R and
Pη-a.s. y ∈ R.

(iii) Fix y ∈ R and take a r.v. ζ with cdf Fζ(x) = Fξ|η(x|y), x ∈ R. The
SFSD property implies ζ <FSD η. Secondly, recall that ζ <FSD η if and only if
Eg(ζ) ≥ Eg(η) for all non-decreasing function g : R→ R (see 1.A.1. in Shaked and
Shanthikumar (1994)). ¤

For more on first and second order stochastic dominance and also on other
known notions of stochastic dominance see Shaked and Shanthikumar (1994) and
Kaas, Heerwarden and Goovaerts (1994).

Next, we collect some basic facts on the SSSD property.

Theorem 2 (Some features of SSSD).

(i) For any r.v.’s ξ and η, ξ <SSSD η implies ξ <SSD η.

(ii) If ξ and η are independent r.v.’s then ξ <SSSD η is equivalent with ξ <SSD η.

(iii) For any r.v.’s ξ and η, ξ <SSSD η holds if and only if we have E (g(ξ)|η) ≥
Eg(η) a.s. for all nondecreasing, concave function g : R→ R.

Proof. The proof of this theorem is fairly analogous to the proof of Theorem
1. The description of SSD (see Chapter 5 in Ingersoll (1987)) gives further hint for
proving statement (iii).

3. Generalization of the theorem of Hadar and Seo

Theorem 3. Let U : R 7→ R be differentiable, concave and nondecreasing. Then
the following statements are equivalent:

(i) β∗
1 ≥ β∗

2 in any two-securities market {r1, r2} with r1 <SFSD r2,

(ii) the function x 7→ xU ′(x) is nondecreasing.

Proof. (1) =⇒ (2) Take markets {r1, r2} with independent returns r1, r2. Now
statement (ii) in Theorem 1 together with a theorem of Hadar and Seo (Theorem
4. in Hadar and Seo (1988)) directly implies (2).

(2) ⇐= (1) As in the proof of Theorem 4 in of Hadar and Seo (1988), we can
show β∗

1 ≥ β∗
2 by proving that

∂E Xπ
T

∂β1

∣∣∣∣
β1=1/2

= E (X1 −X2)U
′
(
X1 +X2

2

)
≥ 0 (5)

(which is equivalent with β∗
1 ≥ β∗

2). To check this first write
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∫ ∫
(x− y)U ′

(
x+ y

2

)
PX1,X2(dx, dy) =

∫ ∫
xU ′

(
x+ y

2

)
PX1|X2

(dx|y) PX2(dy)−
∫

x

∫
U ′

(
x+ y

2

)
PX1|X2

(dy|x) PX2
(dx).

(6)

Now, note that both the function x 7→ −U ′(x) and the function x 7→ xU ′ (x+y
2

)

for y ≥ 0 are nondecreasing and hence (iii) of Theorem 1 can be applied to both
terms of the second line in (6) to get for

∫
xU ′

(
x+ y

2

)
PX1|X2

(dx|y) ≥
∫

xU ′
(
x+ y

2

)
PX2(dx) (7)

for PX2-a.e. y ∈ R and
∫

U ′
(
x+ y

2

)
PX1|X2

(dy|x) ≤
∫

U ′
(
x+ y

2

)
PX2(dy) (8)

for PX2-a.e. x ∈ R. Finally, (5) follows directly from the combination of (6) with
(7) and (8). ¤

Theorem 3 can be literally rewritten for the case of second order stochastic
dominance and thus we get Theorem 4. One can easily generalize the statement of
Theorem 3 for n-securities market as well (Theorem 5).

Theorem 4. Let U : R 7→ R be differentiable, concave and nondecreasing. Then
the following statements are equivalent:

(i) β∗
1 ≥ β∗

2 in any two-securities market {r1, r2} with r1 <SSSD r2,

(ii) the function x 7→ xU ′(x) is concave and nondecreasing.

Since the proof of this theorem is analogous to the proof of Theorem 3, we omit
its proof here.

Theorem 5. Let U : R 7→ R be differentiable, concave and nondecreasing. Then
the following statements are equivalent:

(i) β∗
1 ≥ β∗

2 in any n-securities market {r1, . . . , rn} with r1|r3, . . . , rn <SFSD

r2|r3, . . . , rn,

(ii) the function x 7→ xU ′(x) is nondecreasing.

Proof. First we mention that instead of (5) this time it is sufficient to show
that for all (β3, . . . , βn) ∈ Rn−2 we have

0 ≤ E(X1 −X2)U
′
(
βX1 + βX2 +

n∑

i=3

βiXi

)
,
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where β = 1−∑n
i=3 βi/2. One can write

E(X1 −X2)U
′(βX1 + βX2 +

n∑

i=3

βiXi) =

∫
. . .

∫ [∫ ∫
(x1 − x2)U

′(βx1 + βx2 +

n∑

i=3

βixi)

PX1|X2,...,Xn
(dx3, . . . , dxn)PX2|X3,...,Xn

(dx3, . . . , dxn)

]
PX3,...,Xn(dx3, . . . , dxn).

The remaining part of the proof can be carried out in a similar way as in the proof
of Theorem 3, thus we omit the details here. ¤

We can see that having proved Theorem 3, it was easy to find its ‘multi-security’
version, namely, Theorem 5. One could, of course, define the conditional strong
second order stochastic dominance in the way the first order one was defined and
then the multi-security case of Theorem 4 could also be written immediately, but
we shall not consider this case in this paper.

In the Introduction we assumed that there are no trading constraints and hence
the proportions in the portfolios can take negative values as well. Hence, one needs
utility functions defined on the whole real line in such case sinceXπ

T can be negative.
One can, of course, handle also the case where the utility function is defined only
on [0,∞) or (0,∞). In the first case, we have to assume furthermore that there are
trading constraints, namely, let βi ≥ 0 (i = 1, . . . , n). The later case can also be
handled by assuming the same trading constraints and, furthermore, the positivity
of the asset values: P(Xi > 0) = 1 (i = 1, . . . , n). Thus Theorem 3 can be literally
rewritten for U defined on [0,∞) or (0,∞).

In the theorems of Hadar and Seo and also in our theorems the monotonicity
of xU ′(x) turned out to be a crucial property. Hence, it should be mentioned that
commonly used utility functions have such a property. Here are some of them:
logarithmic utility (U(x) = log(x), x > 0); exponential (U(x) = c exp(dx) for
x ≥ 0 with c, d < 0); power type (also known as Cobb-Douglas utility function)
(U(x) = xα, x > 0, 0 < α ≤ 1).

4. Examples for the SFSD property

In this section we give several examples where the SFSD property is fulfilled
and examine some commonly used families of distributions as well. We try to study
distributions which seem to be realistic to play the role of the rates of returns (ri’s)
or of the future market prices (Xi = (ri + 1)’s). For this, we note that the SFSD
(or SSSD) property is preserved if r1 and r2 are shifted by a constant c, i.e. when
Xi is replaced by Xi + c for all i, where we claim Xi + c ≥ 0 for all i. Thus, in the
following examples one can choose an appropriate value for the constant c to make
the market more realistic.

Just to show that SFSD can easily occur, first we give a fairly simple example.
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Example 1. Consider a two-securities market {r1, r2} where both of the market
prices concentrate on two atoms, 0 and 1, as follows. Take an ε ∈ [− 1

12 ,
1
12 ] and

put

p1,1 =
2

6
+ ε, p1,0 =

2

6
− ε, p0,1 =

1

6
− ε, p0,0 =

1

6
+ ε,

where pi,j = P(X1 = i, X2 = j).
Clearly, independence of the two rates of returns occur if and only if ε = 0. Note,

moreover, that X1 <FSD X2 since we have P(X1 = 0) = 1
3 < P(X2 = 0) = 1

2 .
Furthermore, we can easily check that X1 <SFSD X2. Indeed, we have

FX1|X2
(x|y) = 1/6 + ε

1/2
≤ Fx2(x) =

1

2
,

for 0 ≤ y < 1 and 0 < x ≤ 1, and

FX1|X2
(x|y) = 1/6− ε

1/2
≤ Fx2(x) =

1

2

for 1 ≤ y and 0 < x ≤ 1. The remaining cases are trivial.

The following example shows that one can find the SFSD property among the
absolutely continuous distributions as well.

Example 2. Let ε be a constant in [−1/2, (
√
3 − 1)/2] and take a two-securities

market {r1, r2}, where the joint density function of X1 and X2 is

f(x, y) =

{
x+ 2εy + 1

2 − ε, if (x, y) ∈ [0, 1]× [0, 1],

0, otherwise.

Then the cdf of X1 is FX1(x) = x(x + 1)/2 for x ∈ [0, 1], whereas the cdf of X2

is FX2(x) = εx2 + (1 − ε)x over [0, 1] and hence X1 displays first order stochastic
dominance over X2 due to FX1(x) ≤ FX2(x) for x ∈ R. Note that the case ε = 0
is equivalent again with the independence of the two returns.

Turning to the verification of the SFSD property notice that a conditional dis-
tribution function of X1 given X2 is

FX1|X2
(x|y) =





1
2x(x+1)+ε(2xy−x)

1+ε(2y−1) , if (x, y) ∈ [0, 1]× [0, 1]

1, if x > 1, y ∈ [0, 1],

0, otherwise.

(9)

Thus, it remains to check the following inequality

FX1|X2
(x|y) ≤ FX2(x), ∀x, y ∈ [0, 1]. (10)

It’s easy to see that (10) is equivalent with

ε2(2y − 1) + ε− 1

2
≤ 0 for y ∈ [0, 1],

which is fulfilled due to the choice of ε.
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5. Preferred stocks

In the previous section we have shown examples for the SFSD property intro-
duced in Definition 3. It should be mentioned that the way we gave a modifica-
tion for the first order stochastic dominance in Definition 3 in order to keep the
statement of the theorem of Hadar and Seo is not necessarily the only possibility.
Although it was easy to construct examples to fulfill the definition, many of the
commonly used classical two-dimensional distributions cannot satisfy the required
property or lead to the independent case. For instance, taking a two-dimensional
exponential distribution defined by the survival function

P(X1 > x,X2 > y) = F̄ (x, y) =

{
exp(−λ1x− λ2y − λ1,2 max(x, y)) for x, y > 0

0 otherwise
(11)

(λ1, λ2 > 0, λ1,2 ≥ 0), one can check that we have X1 <SFSD X2 if and only if
λ1,2 = 0 and λ1 ≥ λ2. However, these two conditions are met if and only if the
coordinates are independent and X2 is dominated by X1 in the sense of first order
stochastic dominance. Thus, it is a case for which the Definition 3 is not fruitful.

Therefore, still having in mind the purpose to understand the reasons that could
lead someone to prefer one asset to another one, we go on seeking for another
possible notion of stochastic dominance.

First, we introduce a new notion and then we show that it is also appropriate for
our purposes and finally we give examples of two-dimensional distributions with
the new property. We show that in these examples the new type of stochastic
dominance is fulfilled, although the strong first order dominance is not satisfied in
most of the cases, that is, further two-dimensional distributions can be studied in
our portfolio problems by the aid of the new notion.

Definition 12. Given two nonnegative random variables, X and Y , we say that
X is preferred to Y if

E(X − Y )f (X + Y ) ≥ 0 (13)

for all decreasing differentiable function f : [0,∞) → [0,∞). If X is preferred to Y
then we write X <PR Y .

In Definition 12 the condition taken on the derivative of the function f seems to
be unnecessary, since in (13) no term involves the derivative. Therefore one could
claim less in the definition. However, as we shall see, for our purposes the way we
chose seems to be the most appropriate one.

Note that X <PR Y implies X + c <PR Y + c for c ∈ R provided that X + c
and Y + c remain nonnegative.

Theorem 6. Let X and Y be two random variables such that

X :=
V +W

2
and Y :=

V −W

2
,
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where, given A > 0 and −A ≤ B < C ≤ A, V and W are independent random
variables with

P(V ≥ A) = P(W ∈ [B,C]) = 1.

Then we have the following statements:
(a) X and Y are nonnegative.
(b) X <PR Y ⇐⇒ EW ≥ 0 ⇐⇒ EX ≥ EY .
(c) If, furthermore, V is unbounded (i.e., P(V ≥ x) > 0 for all x ∈ R) then
X <SSD ucceqSFSDY .

Proof.
(a) Since P((V,W ) ∈ [A,∞) × [B,C]) = 1, we have V+W

2 ≥ A+B
2 ≥ 0 and

V−W
2 ≥ A−C

2 ≥ 0.
(b) If f : [0,∞) → [0,∞) then by the independence of V and W we obtain

E (X − Y )f

(
X + Y

2

)
= E(X − Y )Ef

(
X + Y

2

)
.

Since Ef
(
X+Y

2

)
≥ 0 for nonnegative functions f we have X <PR Y if and only if

E(X − Y ) ≥ 0.
(c) Due to the construction FX(x) < 1 and FY (x) < 1 for all x ∈ R. However,

fixing y ∈ R+, to satisfy both x + y ∈ [A,∞) and x − y ∈ [B,C] the value of x
must lie in [B + y, C + y]. Hence, the conditional distribution of X given {Y = y}
is concentrated in a bounded interval which means that FX|Y (x|y) = 1 if x is large
enough. For such x we have FX|Y (x|y) > FY (x). ¤

Theorem 7. Given a two-securities market {r1, r2} with

1 + r1 <PR 1 + r2

we have
β∗
1,U ≥ β∗

2,U

for all nondecreasing, concave and twice differentiable utility functions, where
(β∗

1,U , β
∗
2,U ) denotes the optimal portfolio with respect to the utility function U .

Proof. Given a nondecreasing, concave and twice differentiable utility function
U , we have

E (X1 −X2)U
′
(
X1 +X2

2

)
≥ 0

by the Definition 12. Hence, the statement is immediate (Hadar and Seo (1988)).
¤
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