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Abstract

In the first part of the paper Heyting Arithmetic augmented with axioms
n < c for a new constant c is examined from a constructive point of view,
namely its consistency with a version of Church’s Thesis is proved. In the
second part a different extension of HA is treated, an expected property is
proved for a new relation expressing feasibility in arithmetic.
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and constructive mathematics]: Intuitionistic mathematics
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The following examinations are concerned with certain extensions of the so-
called Heyting Arithmetic (HA), which is the usual theory of arithmetic furnished
with the intuitionistic predicate calculus. In relation to the first of these theories,
which will be denoted as HAc, we shall discuss a question which can be considered
as specific to constructive interpretations of mathematical theories. Concerning
our second theory, we are going to present a simple proof theoretic method to
understand the meaning of a certain predicate symbol more thoroughly. Prior to
all these let us give a detailed description of HAc.

Our logic is intuitionistic predicate logic, which is the usual predicate calculus
omitting the rule for double negation.

The language is the usual one-sorted language of arithmetic with possibly in-
dexed variables denoted by lower case letters x, y, z... and with constant symbols
0, c.

We assume that our language of arithmetic contains function symbols for all
primitive recursive functions. Our theory is amplified with the defining equations
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for all primitive recursive functions. Thus, we understand by HA an extension of
the usual theory of arithmetic, which is a conservative extension of it [3].

As a matter of convenience we adopt <, besides =, as a predicate symbol of
arithmetic together with the axioms:

1. ∀xyz(x < y ∧ y < z ⊃ x > z),

2. ∀x¬(x < x),

3. ∀xy(x < y ∨ x = y ∨ y < x),

4. 0 < 1 ∧ ∀x(x > 0 ⊃ x = 1 ∨ x > 1),

5. ∀x(x > 0 ∨ x = 0).

Let us extend HA with axioms n < c for all natural numbers n. The resulting
theory will be termed as HAc.

As early as 1934 Skolem proved the existence of models of nonstandard classical,
that is Peano, arithmetic (PA). In fact, Skolem proved with a simple argument
based on the compactness theorem that the set

Th(N) ∪ {n < c|n ∈ N}
is consistent, where

Th(N) = {σ|σ is a sentence of PA,N |= σ}.
The following proposition provides a similar result but from a proof-theoretic

point of view, and it also gives some insight into the main thread of the subsequent
arguments.

Proposition 1: If HAc ` A(c), then there exists a natural number n, for which
HA ` (∀x > n)A(x).

Proof: When proving A(c) in HAc we only make use of a finite number of the
axioms n < c, so in the derivation we can replace c by a new variable supposed to
be greater than the maximum of the values occurring in the axioms n < c applied
in the proof.

Corollary: If HA is consistent, then HAc is also consistent.

Proof: Take 0 = 1 to be A in the previous lemma.

Intuitionistic logic has a different flavour to classical logic, for example- making
use of the method of realizability devised by Kleene- it can be shown that Heyting
Arithmetic (HA) can be extended with an axiom scheme expressing constructivity,
which is usually termed as Church’s Thesis

(CT ) ∀x∃yA(x, y) ⊃ ∃e∀x∃y(T (e, x, y) ∧A(x,Uy)),



P. Battyányi: On some nonstandard extensions of Heyting Arithmetic 35

such that the resulting theory remains consistent just in case HA is consistent. It
should be remarked that PA is inconsistent with CT [1].

The question arises naturally, whether HAc could be extended with CT pre-
serving consistency relative to the original theory. Instead of CT we are going to
consider a more general scheme, termed as ECT , which is an implicative form of
CT with an almost negative formula in the antecedent:

(ECT ) ∀x(B(x) ⊃ ∃yA(x, y)) ⊃ ∃e∀x(B(x) ⊃ ∃y(T (e, x, y) ∧A(x,Uy))),

where B is almost negative.
Remember that a formula is almost negative, if it does not contain disjunction

and existential quantification occurs in it in front of atomic subformulas, only. The
axiom scheme ECT is also consistent with HA [1]. In our case the consistency
result can be obtained easily making use of the analogous result for HA + ECT .
We can state it as follows.

Proposition 2: If HA is consistent, then HAc + ECT is also consistent.

Proof: By the argument used in Proposition 1, for every formula A(c), such
that HAc + ECT ` A(c), there exists a natural number n, for which
HA + ECT ` (∀y > n)A(y). So the relation HAc + ECT ` 0 = 1 would imply
HA+ ECT ` 0 = 1, which cannot hold, if HA is consistent.

The next part of our exposition differs in its approach a little bit from the one
treated so far.

We are going to consider a theory obtained from HAc by extending it further
and also making some modifications in it. Let F be a one-place predicate symbol.
Add to HAc the following axioms in relation to F :

1. F (0)

2. ∀x∀y(F (x) ∧ y < x ⊃ F (y))

3. ∀x(F (x) ⊃ x < c)

4. ∀x1...∀xn(F (x1)∧ ...∧F (xn) ⊃ F (g(x1, ..., xn))), for each symbol g standing
for a primitive recursive function

5. A(0) ∧ ∀fx(A(x) ⊃ A(Sx)) ⊃ ∀fxA(x), where A(x) does not contain F and
∀fxA(x) means ∀x(F (x) ⊃ A(x)).

Finally, we shall omit the usual induction scheme of HAc, so only the induction
scheme expressed by the last item of the above definition remains. The new theory
will be referred to as HAF f . (The superscript f alludes to the presence of an
induction scheme with restricted quantifiers.)

We are going to prove a statement asserting an expected property of the
predicate F .
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Theorem 1: Let us suppose HAF f ` F (t) for some term t. Then there exists
a natural number n, such that HAF f ` t = n.

Prior to proving the theorem, we would introduce some basic notation concern-
ing the theory of recursive functions.

Let Tn(e, x1, ..., xn, z) and U(z) denote the Kleene-predicate and the result ex-
tracting primitive recursive function usually associated with it, respectively. Recall
that Tn(e, x1, ..., xn, z) is a primitive recursive relation, which holds if e is the Gödel-
number of a computation with arguments x1, ..., xn and result U(z), z coding the
whole computation process.

We are going to apply the following notations frequently

{e}(m1, ...,mn) = k ® ∃z(Tn(e,m1, ...,mn, z) ∧ U(z) = k),

!{e}(m1, ...,mn) ® ∃y{e}(m1, ...,mn = y),

e,m1, ...,mn, k denoting natural numbers.
In the definition below we shall make use of the following abbreviation:

!{n}(m) ∧ {n}(m)rA ® ∃v({n}(m) = v) ∧ ∀v({n}(m) = v ⊃ vrA),

where A is any formula of HAF f and n, m are natural numbers.

Without proof we shall state the following assertion:

Proposition: There exists a general recursive function h : N → N which
enumerates the Gödel-numbers of the terms of HAF f (not necessarily injectively).

Let us define a realizability relation as follows.

Definition: We shall define realizability for atomic formulas first.

1.
nrt = s ® Prf (n, pt = sq),

where n ∈ N, Prf is a primitive recursive relation coding provability in
HAF f .

2. The case of the formulas of the form t < s is quite similar to the previous
one.

3. nrF (t) ® j1 (n)rt = j2 (n), where t is a term of HAF f .

Definition:

1. nrA ∧ B ® j1 (n)rA ∧ j2 (n)rB
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2. nrA ∨ B ® j1 (n) = 0 ⊃ j1 (j2 )(n)rA ∧ j1 (n) 6= 0 ⊃ j2 (j2 )(n)rB

3. nrA ⊃ B ® ∀m(mrA ⊃!{n}(m) ∧ {n}(m)rB)

4. nr∀xA(x ) ® ∀m(!{n}(m) ∧ {n}(m)rA(h(m))), where h(m) is the term of
which the Gödel-number is h(m).

5. nr∃xA(x ) ® j1 (n)rA(h(j2 (n)))

Theorem 2: If HAF f ` A, then there is a natural number n such that nrA
holds.

Proof: The proof goes along the lines of the proof of the standard argument for
the original Kleene-type realizability [1], some care is needed only when realizing
the induction axiom and the axioms in connection with F .

Let us treat the induction axiom first. Let us suppose nrA(0 ) ∧ ∀f x (A(x ) ⊃
A(Sx )). We have to find a partial recursive function which, applied to n, supplies
a value realizing ∀fxA(x). To this end let wr∀f xA(x ) and vnF (h(k)) be valid for
some natural numbers w, v and k. By definition vnF (h(k)) ® Prf (j1 (v), pj2 (v) =
h(k)q), which implies, j1(v) being a natural number, the provability of j2(v) = h(k)

in HAF f . From the lemma below we can conclude that it is enough to construct
a number for the realizability of A(j2(v)).

First of all j1(n)rA(0 ). We can find a number n0, such that h(n0) = p0q. Let
us suppose that m0 is a number realizing F (0).
Then {{{j2(n)}(n0)}(m0)}(j1(n))rA(S0 ).

Find numbers n1,m1 now, such that h(n1) = pS0q and m1rF (S0 ). Then,
denoting the term above obtained for A(S0) by s0, we can write
{{{j2(n)}(n1)}(m1)}(s0)rA(SS0 ), thus we get an s1 realizing A(SS0).

Continue this process until we find an sj2(v) which realizes A(j2(v)).
Let us examine one more axiom, namely ∀x(F (x) ⊃ x < c). Assume for natural

numbers n and m we have nrF (h(m)). Then Prf(j1(n), pj2(n) = h(m)q), that is,
given a Gödel-number of the proof of j2(n) = h(m), we can calculate using n and
m a Gödel-number for the proof of h(m) < c, from which we can deduce that the
realizability of the underlying axiom holds.

Lemma: For every formula A of HAc there is a natural number n realizing
∀x∀y(x = y ⊃ (A(x) ⊃ A(y))).

Proof: The proof is by induction with respect to the logical complexity of A.

Now we can turn to the proof of Theorem 1.

Proof of Theorem 1: Let us suppose HAF f ` F (t) for some term t. Then,
by the above theorem, there is an n for which nrF (t) holds. This means
Prf(j1(n), pj2(n) = tq), by which the assertion of the theorem follows.
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