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Abstract

In this paper we demonstrate applying time series models on medical
research. The Hungarian mortality rates were analysed by autoregressive
integrated moving average models and seasonal time series models examined
the data of acute childhood lymphoid leukaemia.

The mortality data may be analysed by time series methods such as au-
toregressive integrated moving average (ARIMA) modelling. This method
is demonstrated by two examples: analysis of the mortality rates of cere-
brovascular diseases and analysis of the mortality rates of cancer of cervix.
Mathematical expressions are given for the results of analysis. The rela-
tionships between time series of mortality rates were studied with ARIMA
models. Calculations of confidence intervals for autoregressive parameters by
tree methods: standard normal distribution as estimation and estimation of
the White’s theory and the continuous time case estimation. Analysing the
confidence intervals of the first order autoregressive parameters we may con-
clude that the confidence intervals were much smaller than other estimations
by applying the continuous time estimation model.

We present a new approach to analysing the occurrence of acute child-
hood lymphoid leukaemia. We decompose time series into components. The
periodicity of acute childhood lymphoid leukaemia in Hungary was examined
using seasonal decomposition time series method. The cyclic trend of the
dates of diagnosis revealed that a higher percent of the peaks fell within the
winter months than in the other seasons. This proves the seasonal occurrence
of the childhood leukaemia in Hungary.

Key Words and Phrases: time series analysis, autoregressive integrated
moving average models, mortality rates, seasonal decomposition time series
method, acute childhood lymphoid leukaemia

321



322 6 th International Conference on Applied Informatics

1. Introduction

Time series analysis is a well-known method for many years. Box and Jenkins
provided a method for constructing time series models in practice [1], [2]. Their
method often referred to as the Box-Jenkins approach and the autoregressive in-
tegrated moving average models (ARIMA). This method has been applied in the
beginning such fields as industry and economics later in medical research as well
as [3], [4], [5], [6].

The method of seasonal time series analysis can be used in various fields of the
medicine. With such time series one can detect the periodic trend of the occurrence
of a certain disease [7], [8], [9]. Among other diseases, the seasonal periodicity of
the childhood lymphoid leukaemia was also analysed using statistical methods [10],
[11]. The pathogenesis of the childhood lymphoid leukaemia is still uncertain, but
certain environmental effects may provoke the manifestation of latent genes during
viral infections, epidemics or pregnancy.

The date of the diagnosis of patients were statistically analysed to determine the
role, which the accumulating viral infections and other environmental effects may
play during the conception and fatal period on the manifestation of the disease.
Because the available data is rather limited and controversial, it seemed logical to
make an in-depth analysis of the date of diagnosis of the acute lymphoid leukaemia
in Hungarian children.

2. Methods

2.1. Autoregressive moving average models

The mortality data often change in the form of ’time series’. Data of frequencies
of mortality rates are usually collected in fixed intervals for several age groups and
sexes of the population. Let the value of the mortality rates zt, zt−1, zt−2, . . . in
the years t, t-1, t-2, . . . . For simplicity we assume that the mean value of zt is
zero, otherwise the zt may be considered as deviations from their mean. Denote at,
at−1, at−2, . . . a sequence of identically distributed uncorrelated random variables
with mean 0 and variance σ2

a. The at are called white noise.
The autoregressive moving average model of order p, q (ARMA(p, q)) can be

represent with the following expression [1], [12]: zt = φ1zt−1 + · · · + φpzt−p+at +
θ1at−1 + · · · + θqat−q. Where φ1, φ2, . . . , φp and θ1, θ2, . . . , θq are parameters, p
means the p order of autoregressive process and q denotes the q order of moving
average process.

There are special cases of the ARMA(p, q) models: the autoregressive model of
order p (AR(p) model) and the moving average model of order q (MA(q) model).
The AR(p) [1], [12]: zt = φ1zt−1 + · · ·+ φpzt−p+at. The MA(q) [1], [12]: zt =at +
θ1at−1 + · · · + θqat−q. The special case of AR(p); when p=1; zt = φ1zt−1+at. zt
is linearly dependent on the previous observation zt−1 and the random shock at.
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The special case of MA(q); when q=1; zt=at + θ1at−1. In this case zt is linear
expression of the present and previous random shock.

The time series that has a constant mean, variance, and covariance structure,
which depends only on the difference between two time points, is called stationary.
Many time series are not stationary. It has been found that the series of first
differences is often stationary. Let wt the series of first differences, zt the original
time series, than wt=zt-zt−1 = ∇zt. The Box-Jenkins modelling may be used for
stationary time series [1], [12].

The dependence structure of a stationary time series zt is described by the
autocorrelation function: ρk = correlation(zt;zt+k); k is called the time lag. This
function determines the correlation between zt and zt+k.

To identify an ARIMA model Box and Jenkins have suggested an iterative
procedure [1]:

¥ for provisional model may be chosen by looking at the autocorrelation func-
tion and partial autocorrelation function

¥ parameters of the model are estimated

¥ the fitted model is checked

¥ if the model does not fit the data adequately one goes back to the start and
chooses an improved model.

Among different models, which represent the data equally well, one chooses the
simplest one, the model with fewest parameters [1], [12].

The relation between two time series zt and yt can be give by the cross correla-
tion function (ρzy(k)); ρzy(k) = correlation(zt; yt+k); where k= 0,±1,±2, . . . . The
cross correlation function determines the correlation between the time series as a
function of the time lag k [1].

2.2. Estimations for confidence intervals

For estimation the parameter of first order autoregressive model two methods
are well known: apply the standard normal distribution as estimation and the
White method [13]. These methods cannot be applied in non-stationary case. Little
known for estimation of the parameter of first order autoregressive parameter is
the application of estimation for continuous time case processes [13], [14]. This
method can be applied in each case properly.

2.3. Seasonal time series

The time series usually consist of three components: the trend, the periodicity
and the random effects. The trend is a long-term movement representing the
main direction of changes. The periodicity marks cyclic fluctuations within the
time series. The irregularity of the peaks and drops form a more-or-less constant
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pattern around the trend line. Due this stability the length and the amplitude of
the seasonal changes is constant or changes very slowly. If the periodic fluctuation
pattern is stable, it is called a constant periodic fluctuation. When the pattern
changes slowly and regularly over the time, we speak of a changing periodicity.
The third component of the time series is the random error causing irregular,
unpredictable, non-systematic fluctuations in the data independent from the trend
line.

An important part of the time series analysis is the identification and isolation
of the time series components. One might ask how these components come together
and how can we define the connection between the time series and its components
with a mathematical formula. The relationship between the components of a time
series can be described either with an additive or a multiplicative model.

Let yi,j (i=1,. . . , n; j=1,. . . , m) marks the observed value of the time series.
The index i stands for the time interval (i.e. a year), the j stands for a particular
period in the time interval (i.e. a month of the year). By breaking down the time
series based on the time intervals and the periods we get a matrix-like table. In
the rows of the matrix are the values from the various periods of the same time
interval; while in the columns are the values from the same periods over various
time intervals.

y1,1; y1,2; . . . ; y1,m;
y2,1; y2,2; . . . ; y2,m;
y3;1; y3,2; . . . ; y3,m;
. . .
yn,1; yn,2; . . . ; yn,m.

Let di,j (i=1,2,. . . , n; j=1,2,. . . , m) mark the trend of the time series, si,j
(i=1,2,. . . , n; j=1,2,. . . , m), the periodic fluctuation and εi,j (i=1,2,. . . , n;
j=1,2,. . . , m), the random error. Using these denotations the additive seasonal
model can be defined as yi,j=di,j+si,j + εi,j , (i=1,2,. . . , n; j=1,2,. . . , m), the
multiplicative model as yi,j=di,j∗si,j ∗ εi,j ; (i=1,2,. . . , n; j=1,2,. . . , m).

The trend of a time series can easily be computed with moving averages or
analytic trend calculation. Moving averaging generates the trend as the dynamic
average of the time series. Analytic trend calculation approximates the long-term
movement in the time series with a simple curve (linear, parabolic or exponential
curve) and estimates its parameters.

The indices of the periodic fluctuation are called seasonal differences (in the
additive model) or seasonal ratios (in the multiplicative model). These indices
represent the absolute difference from the average of the time interval using the
additive model or the percentile difference using the multiplicative model. Seasonal
adjustment is done by subtracting the j seasonal difference from the j data value
of each i season (additive model) or by dividing the j data value of each i season
by the j seasonal ratio (multiplicative model). The seasonally adjusted data reflect
only the effect of the trend and the random error.
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3. Results

3.1. Analysing the mortality rates

The SPSS program-package was used for analysing. ARIMA models were iden-
tified for some mortality rates. The results are demonstrated two cases from Hun-
garian mortality rates.

The Figure 1 illustrates the mortality rates of cancer of cervix for age class 0-64
years and over age 65. The autocorrelation functions decay for both data series
[Figure 2].
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Figure 1: Mortality rates of cancer Figure 2: The autocorrelation function
of cervix age-class 0-64 and over for mortality rates for age class 0-64
age 65

The partial autocorrelation functions have a significance value at k=1 lag. The
first order autoregressive model can be acceptable on the basis of autocorrelation
and partial autocorrelation functions. So the stochastic equation for age class 0-64
years: zt=0,576zt−1+εt. The model for over age 65 is the following: zt=0,703zt−1+
εt. When the fitted model is adequate then the autocorrelation of residuals have
χ2 distribution with (K-p-q) degree of freedom [4]. On the basis of test the selected
models were adequate because χ2

0−64 = 1, 956; χ2
over 65 = 1, 651; χ2

0,05;5 = 11, 07.
The Figure 3 demonstrates the cross correlation function before fitting model.

The cross correlation function for the residuals can be seen in the Figure 4 after
fitting model. From behaviour of residuals we may be conclude that between
examined time series isn’t “synchronisation” [4].

The change in the mortality rates of cerebrovascular diseases for over age 65
between female and male are well illustrates in the Figure 5. The stochastic
equation for the mortality rates of female: zt=0,809zt−1 + εt; for data of male:
zt = 0, 792zt−1+εt. On the basis of the χ2 test the selected models were adequate;
because χ2

female = 3, 886; χ2
male = 1, 7461; χ2

0,05 = 11, 07 [4].
The cross correlation function for residuals demonstrates in the Figure 6. It has

significance value at k=0 lag on 95% significance level. It may be concluded that
there is “synchronisation” between time series. In that years when the mortality
rates for female increased the mortality rates for male increased as well.
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Figure 3: The cross correlation Figure 4: The cross correlation
function for mortality rates of cancer function of residuals for mortality rates
of cervix between age class 0-64 and of cancer of cervix between age class
over age 65 0-64 and over age 65
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Figure 5: Mortality rates of cerebrovas- Figure 6: The cross correlation
cular diseases over age 65 between function of residuals for mortality
female and male rates of cerebrovascular diseases

between groups

The confidence intervals were carried out by three mentioned methods. For
the calculations of the confidence limits we used the tables of the known exact
distribution of the maximum-likelihood estimator of the damping parameter of an
autoregressive process [13], [14]. The confidence intervals for different significance
levels for the first order autoregressive parameter of stochastic equation for male
can be seen in the following table.
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3.2. Analysing the periodicity of acute childhood lymphoid
leukaemia

The databank of the Hungarian Paediatric Oncology Workgroup contains the
data of all the patients with lymphoid leukaemia diagnosed between 1988 and 2000.
In this time interval a total of 814 children were registered (of which 467 were boys).
The patients were 0-18 years old, with a mean age of 6,4 years and a median of 5,4
years.

The components of the time series can be identified and isolated using statistical
program packages. The analysis of the seasonal periodicity of the acute childhood
lymphoid leukaemia was done with the SPSS 9.0 statistical program package.

The analysis of the periodicity of acute childhood lymphoid leukaemia was
performed on the basis of the date of the diagnosis (year + month) of the disease.
We analysed three data series. The first data series contained the number of all
the patients diagnosed monthly, the second contained the number of those patients
younger than the value of the median, the third series contained the number those
older than the value of the median.

The seasonal trend of all patients revealed 9 peaks (peak=the value of the
cyclic trend greater than 6), see Figure 7. 6 of these peaks fell within the winter
months (November-February), 1 in the autumn period (September-October), 1 in
the summer months (June-August) and 1 in the spring months (March-May).

The seasonal trend of the younger age group showed 7 peaks (peak=cyclic trend
greater than 3) in the winter, 1 in the spring and 1 in the summer months.

The seasonal trend of the older age group showed 7 peaks (peak=cyclic trend
greater than 3) in the winter, 1 in the spring, 1 in the autumn and 4 in the summer
months.

4. Discussions

The Box-Jenkins models may be useful for analysing epidemiological time series.
The method described the relationships between time series of mortality rates. It
reveals strong synchronised behaviour of cerebrovascular diseases between the sexes.
For time series of mortality data for cancer of cervix for age class 0-64 years and
age class over 65 no such synchronisation is found between subgroups.

From the analysis of the first order autoregressive parameters it may be seen
that by applying the normal distribution as estimation and White method the
confidence intervals are near equal. For the upper estimations of confidence limits
we can get larger than one applying these methods. Applying the continuous time
process for the estimation of the confidence intervals they are much smaller and it
can be used in each case [13].

Analysis of the seasonality of childhood lymphoid leukaemia in Hungary was
performed both on the total number of patients and on the data series divided at
the median. This way the characteristics can be observed more easily.

A certain periodicity was found in the dates of the diagnosis in patients with
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leukaemia. Although there was some difference in the patterns of the cyclic trend
peaks of the three time series, the majority of the peaks fell within the winter
months in all three-time series. This was more significant in the group of all the
patients and in the younger age group. The results of the analyses proved the
seasonal occurrence of the childhood lymphoid leukaemia. Some studies reported
similar seasonality [15], while other studies denied any kind such periodicity [16].
Our results prove the seasonal occurrence of the childhood lymphoid leukaemia
in Hungary. Due to the controversial nature of the available international data,
further studies should be carried out.

Figure 7: Seasonal trend of all patients of acute lymphoid leukaemia
diagnosed monthly in the observed period.
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