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Abstract

A global and reliable interval optimization tool, a Branch and Bound tech-
nique, developed at the Institute of Informatics, University of Szeged, and
based on the C++ toolbox of R. Hammer et al., 1994, and the Profil/Bias
routine library, is tried and successfully applied for solving a chemical en-
gineering problem. For checking the feasibility (according to the method
developed at Dept. Chem. Eng. BUTE) of batch extractive distillation,
and determining the appropriate range of its operation parameters, reliable
information is needed on the existence and location of singular points of a
phase curve map belonging to a differential equation coupled with a compli-
cated and nonlinear algebraic equation system. Conventional methodologies
failed to provide reliable information. Here a subproblem of the feasibility
methodology is introduced, the working cycle of the interval algebra based
optimization tool is sketched, and its applicability on the targeted problem
is demonstrated.

Batch extractive distillation
Batch extractive distillation (Fig. 1) is a semibatch process applied to separate

liquid mixtures of chemical compounds forming minimum boiling azeotrope [1, 2].
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A binary liquid mixture of compounds A and B with composition xS is charged
to the still (S), the column is heated up with condensing the vapour (V ), and all
the condensate liquid is being fed back at the top as reflux stream. The condensed
vapour is of azeotropic composition. After warming up, feeding (F) of a heavy
boiling liquid compound, so-called entrainer (E) to the column is started. As
a result, the condensate is enriched in A, and compound B remains in the still
(run-up with total reflux). Product removal (D, distillate) is started when the
required composition is reached in the top, and only V-D is fed back as reflux. The
separation is performed in this step, until compound A is removed from the still,
and the required distillate composition cannot be maintained. The new mixture of
B and E can then later be separated much easier.

S

F

V

D

Figure 1: Batch extractive distillation process

The main parameters are the ratios F/V (feed ratio) and R = (V −D)/D (reflux
ratio). The run-up step is characterized with R = ∞, infinite reflux ratio, i.e. total
reflux. The process is feasible just in a narrow range of F/V and R, and finding this
range is difficult. Feasibility is conventionally checked graphically in a composition
triangle {0 ≤ xA ≤ 1, 0qleqxB ≤ 1} of the mole fractions (xE = 1− xA − xB).
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The composition curve along the column, projected to the composition space,
without feeding F is called ‘rectifying profile’, and can be computed by solving the
differential equation

dxi

dh
=

V

V −D
(yi (xi, xD,i, R)− y∗i (xA, xB)) ; (i ∈ {A,B}) (1a)

where xD is the specified distillate composition, h is column length, yi is a
linear function of xi, with parameter R, and y∗ is a complicated implicit function
of x. For distillate composition near pure A, the profile runs along the A-E edge
of the triangle, as on Fig. 2. The projected composition curve along the lower part
of the column if entrainer E is fed to the column is called ‘extractive profile’. It
can be calculated from a given xS still composition with the differential equation

dxi

dh
=

V

V −D
(yi (xi, xD,i, R, F/V, xF,i)− y∗i (xA, xB)) (i ∈ {A,B}) , (1b)

where xF is the feed composition, yi is a linear function of x i, with parameters
xF ,i, F/V and R, and is identical to y i used in (1a) when F/V=0. Any xS

still composition is called feasible if the extractive profile computed from it, as
initial value, reaches a point of the rectifying profile, like in Fig. 2. Our task is
to determine the range of F/V and R characterized by a reasonable domain of
feasible still compositions. Those F/V and R values are also called feasible, other
values are infeasible.

Figure 2: Rectifying profile and some extractive profiles. Feasible case.

Feasibility is controlled by the singular points and separatrices of the extractive
profile map. If there is a stable node outside the triangle, below the A-E edge, then
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a bunch of the extractive profiles is attracted to it, thus they cross the rectifying
profile, and the process is feasible. Saddle points and the corresponding separatrices
form the boundary of the feasible domain. The location of points and separatrices
depends of the parameters; and there are sudden changes in the map’s general
shape at some values, i.e. there are bifurcations. Saddle points cannot be precisely
found by graphical methods, and not all the singular points can reliably be found
or their existence cannot be excluded with certainty using traditional stochastic
methods. This is why we used an interval arithmetic based branch-and-bound
technique.

An interval arithmetic based branch-and-bound
technique

To solve the related root finding problems we have implemented an interval
arithmetic based optimization algorithm [3, 4]. Where it was necessary we have
reformulated the original problem to the minimization of a nonlinear function in
the n-dimensional real space. The applied algorithm was:

[Step 1] Let L be an empty list, the leading box A := X, and the iteration
counter k := 1. Set the upper bound of the global minimum fu to
be the upper bound of F(X).

[Step 2] Subdivide A into s subsets. Evaluate the inclusion function F(X)
for all the new subintervals, and update the upper bound of the
global minimum fu as the minimum of the old value and the min-
imum of the upper bounds on the new subintervals.

[Step 3] Add the new subintervals to the list L.
[Step 4] Use the accelerating devices: delete parts of the subintervals

stored in L that cannot contain a global minimizer point.
[Step 5] Set A to be that subinterval from the list L which has the smallest

lower bound on f, and remove the related item from the list.
[Step 6] While termination criteria do not hold let k := k+1 and go to

Step 2.
This applied method was a branch-and-bound algorithm that utilized the in-

clusion function of the objective function that was built by the so called natural
interval extension. Interval arithmetic and the interval extension of the used stan-
dard functions were realized by the PROFIL library [6]. The algorithm itself was
an updated and customized version of the global optimization procedure published
in [5], and improved in several steps as in [1] and [4]. The computational environ-
ment was a Pentium IV PC (1 Gbyte RAM and 1.4 MHz) with a Linux operation
system. The implemented algorithm was successfully applied to constrained non-
linear optimization problems, both to test examples and to hard real life problems
[7].
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Solution of a particular problem

We are looking for the stationary solutions of the differential equation (1), i.e.

yi − y∗i = 0; (i ∈ {A,B}) (2)

together with the following additional equations:

Py∗i = γixip
◦
i ; (i ∈ {A,B,E}) , (3)

∑

i∈{A,B,E}
xi = 1, (4)

∑

i∈{A,B,E}
y∗i = 1, (5)

lg p◦i = Ai −
Bi

T − 273.14 + Ci
; (i ∈ {A,B,E}) , (6)

ln γi =

∑
j∈{A,B,E}

τjiGjixj

∑
l∈{A,B,E}

Glixl
+

∑

j∈{A,B,E}

xjGij∑
l∈{A,B,E}

Gljxj


τij −

∑
n∈{A,B,E}

xnτnjGnj

∑
l∈{A,B,E}

Gljxj


 ; (7)

(i ∈ {A,B,E}) ,

τij =
Uij

RGT
; (i, j ∈ {A,B,E}) , (8)

Gij = exp (−αijτij) ; (i, j ∈ {A,B,E}) , (9)

yi =

(
R

R+ 1
+

F

V

)
xi +

1

R+ 1
xD,i −

F

V
xF,i; (i ∈ {A,B}) , (10)

where Ai, Bi, Ci, Uij , and αij are material model parameters, RG is a general
physical constant, P, xD,i, and xF,i are problem specifications. The unknown vari-
ables of the problem itself are xA, xB , xE , and T ; whereas p◦i , γi, yi, y∗i , τij , and Gij

are unknown variables whose values are not interesting.
The particular problem to be solved is assigned by the model form (equations

3 and 6 to 9), the model parameters, and problem specifications. Long computa-
tions are usually performed with a set of possible R and F/V values. Below we
demonstrate how one particular computation case of a problem is solved with our
procedure.
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Table 1. Material model parameters Ai, Bi, and Ci

i Ai Bi Ci

A 7.11714 1210.595 229.664
B 8.08097 1582.271 239.726
E 8.07131 1730.63 233.426

Table 2. Material model parameters Uij , and αij

i j Uij Uji αij = αji

A B 399.395 -16.784 0.292
A E -47.613 1919.523 0.291
B E -347.817 -347.817 0.302

In the particular case considered here RG = 1.98721, Ai, Bi, and Ci are given
in Table 1, Uij, and αij are given in Table 2. The specifications are xD =
[0.94, 0.025, 0.035], xF = [0, 0, 1]. The parameter values are R = 4, and F/V = 0.2.

There are four stationary points in the triangle with these values (one stable
node, one unstable node, and two saddle points, and all of them are found. The
stable node is located at xSN ∈ [[0.572164to0.572274], [0.09436to0.094491] ,
[0.33344to0.33368]].

Figure 3 shows how the composition triangle was originally decomposed in order
to ease the search. The stable node is found in the middle lower subdomain. How
the subdomain was successively subdivided into smaller subdomains in course is
(partially) shown in Figures 4a-4c.
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Figure 3: The original subdivision of the composition space
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Figure 4.a: A subdivision in course

A set of boxes is shown in Figure 4a, with box borders along constant xA

and constant xB , but without indicating the box borders constituted by inequality
constraints applied on xE . That is, wider boxes are shown in the figure, for the
sake of lucidity, than really used. The box containing a bold point is found as a
candidate for containing a solution. All the other boxes were examined and then
discarded because the method excluded the existence of a solution there. The box
where solutions cannot be excluded were further subdivided.

A later subdivision is shown on Figure 4b; and an even later is on Figure 4c.
The box containing a bold point contains a solution, and the existence of a solution
in that box is proven by the method.
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Figure 4.b: A later subdivision
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Figure 4.c: A later subdivision

Summary

A methodology, recently developed at the Dept. Chem. Eng. BUTE, for check-
ing feasibility of batch extractive distillation, an important chemical unit operation,
applies graphical criteria for deciding whether a given set of design and operating
parameters is applicable, and for finding the appropriate range of parameters. The
use of graphical criteria is based on numerical solution of initial value problems.
Feasibility of the process on phase curve maps, more precisely on the existence or
absence of some singular points and separatrices in the phase space. Saddle points
cannot be precisely located by graphical methodology. Conventional root finding
procedures have also been used to find singular points, but their results are uncer-
tain considering which zeros are found and which are not.

Looking for a more reliable methodology, a global and reliable interval optimiza-
tion tool, a Branch and Bound technique, developed at the University of Szeged,
and based on the C++ toolbox of R. Hammer et al., 1994, and the Profil/Bias
routine library, is tried and successfully applied. The new methodology verified
some known singular point paths and bifurcations, and also discovered new paths
and bifurcations hitherto hidden.

Here we have introduced a subproblem of the feasibility methodology, sketched
the working cycle of the interval algebra based optimization tool, and demonstrated
its applicability on the targeted problem.
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