
6 th International Conference on Applied Informatics
Eger, Hungary, January 27–31, 2004.

A verified computational technique to
locate chaotic regions of Hénon systems∗

Balázs Bánhelyi, Tibor Csendes

University of Szeged, Institute of Informatics
e-mail: {banhelyi | csendes}@inf.u-szeged.hu

Abstract

We present a computer assisted proof for the existence of a horseshoe
of the 7-th iterate classical Hénon map (H(x, y) = (1 + y − αx2, βx)). An
earlier, published theorem gives three geometrical conditions to be fulfilled
by all points of the solution region, given by 2 parallelograms. We ana-
lyze these conditions separately and in case when all of them hold true, the
proof is ready. The method applies interval arithmetic and recursive subdi-
vision. This verified technique proved to be fast on the investigated problem
instances.

Categories and Subject Descriptors: Computer Algorithms and other
Fields of Applied Informatics

Key Words and Phrases: Chaos, Hénon-map, Verified Method

1. Introduction

We study verified computational methods to check and locate regions containing
horseshoes, the prototype of chaotic behaviour. The investigated Hénon map was
H(x, y) = (1 + y − αx2, βx). The paper [4] considered the α = 1.4 and β = 0.3
values and some regions of the two dimensional Euclidean space: E1 = {(x, y) | x ≥
0.4, y ≥ 0.28}, E2 = {(x, y) | x ≤ 0.64, |y| ≤ 0.01}, E = E1 ∪ E2, O1 =
{(x, y) | x < 0.4, y > 0.01}, O2 = {(x, y) | y < 0}.

The sets Q1, Q2 ⊂ {(x, y) | 0.01 = y0 ≤ y ≤ y1 = 0.28} are parallelograms
connecting E1 and E2 with horizontal sides and sides parallel to the line of equation
y = x tanϕ, where ϕ = tan−1 2. The x coordinates of the lower vertices of the

∗This work was supported by the Grants OMFB D-30/2000, OMFB E-24/2001, OTKA T
032118 and T 034350. The authors are grateful to Barnabás Garay (BME, Budapest, Hungary)
and Mihály Görbe (GAMF, Kecskemét, Hungary) for their collaboration.

297

298 6 th International Conference on Applied Informatics

parallelograms are xa, xb, xc, and xd. The nonhorizontal sides of the parallelograms
Q1 resp. Q2 are detoned by a, b resp. c, d, where

σ =

{
(xσ + t, y0 + t tanϕ) | t ∈ [0,

y1 − y0
tanϕ

]

}
, σ = a, b, c, d

and xa < xb < xc < xd < 0.64. Note that ϕ is the lower left angle of the
parallelograms and the tanϕ is the tangent of the lower left angle of the sides.
This notations are demonstrated on Figure 1.

Figure 1: The considered parallelograms and other notations.

For the earlier described settings this statement was proven:

Theorem 1.1. Assume that, for some positive integer k, the conditions:

Hk(a ∪ d) ⊂ O2,

Hk(b ∪ c) ⊂ O1,

Hk(Q1 ∪Q2) ⊂ R2 \ E,

hold true. Then Hk has a horseshoe in Q1 ∪Q2.

According to [4, 9] Theorem 1.1 ensures the chaotic behaviour for the points of
the parallelograms Q1 and Q2 with parallel sides with the x axis (for y = 0.01 and
y = 0.28, respectively), with the common tangent of 2, and lower vertices of 0.460,
0.556; and 0.558, 0.620, respectively. You can see this in Figure 2.

Zgliczynski’s proof is based on the fixed point index with computer assisted
rigorous computations. He used a Lipschitz map to eliminate the errors caused by
the floating point arithmetic. Instead of this we used interval arithmetic. We have
substituted real numbers by intervals. If an obtained number is not representable,
then it is rounded outward.

B. Bánhelyi, T. Csendes: Verified chaos identification 299

Figure 2: Illustration of the Hénon map with original parameters.

Definition 1.1. The interval arithmetic is defined by:

A ◦B = {a ◦ b | a ∈ A and b ∈ B}, A,B ∈ I

(I is the set of [i, j] intervals, where i, j ∈ R, and i < j).

These were implemented as:

[a, b] + [c, d] = [a+ c, b+ d],

[a, b]− [c, d] = [a− d, b− c],

[a, b] ∗ [c, d] = [min(ac, ad, bc, bd),max(ac, ad, bc, bd)],

[a, b]/[c, d] = [a, b] ∗ [1/d, 1/c] if 0 /∈ [c, d].

More on interval based inclusion funcions can be read in [3, 5, 8]

2. New algorithms for checking the chaotic behav-
iour and for locating regions containing such
points

In the proof the earlier conditions are analyzed separately, and in the case when
all of them hold true, the proof is complete. The adaptive subdivision technique is
executed three times independently.

The subdivision technique encloses first the sets Q1 and Q2 in a 2-dimensional
interval. Hence the starting interval is the 2-dimensional interval:

[xa, xd +
(y1 − y0)

tanϕ
][y0, y1].

300 6 th International Conference on Applied Informatics

Then an adaptive subdivision technique generates such a subdivision of the starting
interval that either:

• for all subintervals all the conditions of chaos hold (in case they contain points
of the respective sets), or

• it is shown that a small subinterval (of a user set size) exists, that contradicts
the given condition.

To realize this algorithm we have applied a modified version of an earlier proce-
dure to solve constrained nonlinear optimization problems with tolerance [2, 6, 7].

The algorithm is a subdivision technique:

Step 1. Calculate the initial interval that contains the regions of interest.

Step 2. Push the initial interval into the stack.

Step 3. Pop an interval v out of the stack.

Step 4. Measure the width of v, and determine the widest coordinate direction.

Step 5. Use the actual Hk transformation to v to obtain the interval w.

Step 6. If the interval v has at least one point from the argument set,

and the condition does not hold for w, then

If the width of interval v is less than the user set limit given, then

print v and STOP,

else bisect v along the widest side,

push the subintervals into the stack and go to Step 3.

Step 7. If the stack is empty then print that the condition is proven and STOP,
else go to Step 3.

One step of the algorithm is demonstrated on Figure 3.

B. Bánhelyi, T. Csendes: Verified chaos identification 301

Figure 3: One example for vi and Hk(vi).

For the numerical experiments we have applied the C-XSC programming lan-
guage [3, 5, 8] supporting interval arithmetic. The results were obtained both in
Linux and in the Cygwin environment, on an average personal computer. The
necessary CPU times were seconds.

3. Results and summary

In the first experiment we have checked whether the earlier published regions
are in fact chaotic. The result file:

Checking the conditions of chaos for a Henon system

epsilon = 0.00000000010000000000

exponent= 7

alpha = 1.39999999999999991118
beta = 0.29999999999999998890

x_a = 0.46000000000000001998
x_b = 0.55600000000000004974
x_c = 0.58799999999999996714
x_d = 0.61999999999999999556
y_0 = 0.01000000000000000021
y_1 = 0.28000000000000002665
tangent = 2.00000000000000000000

302 6 th International Conference on Applied Informatics

Starting interval:
[0.46000000000000001998, 0.75500000000000000445]
[0.01000000000000000020, 0.28000000000000002665]

1. condition: successful proof!
Number of function evaluations: 273
Largest depth of the stack: 11

2. condition: successful proof!
Number of function evaluations: 523
Largest depth of the stack: 13

3. condition: successful proof!
Number of function evaluations: 1613
Largest depth of the stack: 14

In this way we were able to prove with a short computation that the published
system is chaotic in the given regions. Those intervals calculated by the program
are given in Figure 4.

Figure 4: Verified intervals for conditions I-II-III, respectively.

B. Bánhelyi, T. Csendes: Verified chaos identification 303

As a next experiment we have extended the parameters of the Hénon map,
whether the chaotic behaviour still holds. The obtained result for the H5 case with
the same parameter setting and with the same starting region:

Checking the conditions of chaos for a H\’{e}non system

epsilon = 0.00000000010000000000

exponent= 5

alpha = 1.39999999999999991118
beta = 0.29999999999999998890

x_a = 0.46000000000000001998
x_b = 0.55600000000000004974
x_c = 0.58799999999999996714
x_d = 0.61999999999999999556
y_0 = 0.01000000000000000021
y_1 = 0.28000000000000002665
tangent = 2.00000000000000000000

Starting interval:
[0.46000000000000001998, 0.75500000000000000445]
[0.01000000000000000020, 0.28000000000000002665]

A small interval not complying with the conditions:
[0.75499999993131505782, 0.75500000000000000445]
[0.27999999993713575729, 0.28000000000000002665]

1. condition: Unsuccessful proof!
Number of function evaluations: 64
Largest depth of the stack: 65

2. condition: successful proof!
Number of function evaluations: 261
Largest depth of the stack: 12

3. condition: successful proof!
Number of function evaluations: 137
Largest depth of the stack: 8

In other words we could find such a very small interval that has points inside
the examined region, which does not fulfill the first condition. Notice that also the
starting interval and the result small interval has coordinates the digits of which

304 6 th International Conference on Applied Informatics

indicate the limitation of machine representation (here double precision). The
width of the contradicting interval is less than 7.0 · 10−11.

Summarizing the paper we can conclude that our program has been imple-
mented in C, and the verification of Theorem 1.1 for k = 7 required the calculation
of H7 for 2409 intervals. This took around one second on an IBM PC PIV. Thus
we can use this technique with some modification in other problems. We solved
some other problems with the described method:

• locate a chaotic region for a Hénon 5-th iterate,

• determine a whole set of those parameter values that ensure the chaotic be-
havior for the H7 transformation with the same parallelograms.

You can read more on these problems in [1].

References
[1] Balázs Bánhelyi’s Hénon home page:

http://www.inf.u-szeged.hu/∼banhelyi/Henon
[2] Csendes, T., Z.B. Zabinsky, and B.P. Kristinsdottir: Constructing large feasible sub-

optimal intervals for constrained nonlinear optimization. Annals of Operations Re-
search, 58(1995) 279-293.

[3] C-XSC Languages home page:
http://www.math.uni-wuppertal.de/org/WRST/index en.html

[4] Galias, Z. and P. Zgliczynski. Computer assisted proof of chaos in the Lorenz equa-
tions. Physica D, 115(1998) 165-188.

[5] Klatte, R., U. Kulisch, A. Wiethoff, C. Lawo, and M. Rauch: C-XSC — A C++ Class
Library for Extended Scientific Computing, Springer-Verlag, Heidelberg, 1993.

[6] Kristinsdottir, B.P., Z.B. Zabinsky, T. Csendes, and M.E. Tuttle: Methodologies for
tolerance intervals. Interval Computations, 3(1993) 133-147.

[7] Kristinsdottir, B.P., Z.B. Zabinsky, M.E. Tuttle, and T. Csendes: Incorporating man-
ufacturing tolerances in optimal design of composite structures, Engineering Opti-
mization 26(1996) 1-23.

[8] Mischaikow, K. and M. Mrozek , Chaos in the Lorenz equations: A computer assisted
proof. Part II: Details, Mathematics of Computation, 67 (1998) 1023-1046

[9] Zgliczynski, P.: Computer assisted proof of the horseshoe dynamics in the Hénon
map. Random & Computational Dynamics 5(1997) 1-17.

Postal addresses

Balázs Bánhelyi and Tibor Csendes
University of Szeged,
Institute of Informatics,
H-6701 Szeged, P.O. Box 652,
Hungary

