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Abstract

Optimization on Stiefel manifolds was discussed by Rapcsák in earlier
papers. There, some numerical methods of global optimization are dealt with
and tested on Stiefel manifolds. In the paper the structure of the optimizer
points is given in some particular problem instances and for a special form
of a quadratic problem defined on a Stiefel manifold. Some reduction tricks
and results are obtained. We are focusing on a special case of the problem,
namely when the coefficient matrices in the objective function are diagonal.

Categories and Subject Descriptors: G.1.6 [Numerical Analysis]: Opti-
mization - global optimization, nonlinear programming;

Key Words and Phrases: Nonlinear optimization, global optimization,
Stiefel manifolds

1. Introduction

In 1935, Stiefel introduced a differentiable manifold consisting of all the ortho-
normal vector systems x1,x2, . . . ,xk ∈ Rn, where Rn is the n-dimensional Euclid-
ean space and k ≤ n [16]. Bolla et al. analyzed the maximization of sums of
heterogeneous quadratic functions on Stiefel manifolds based on matrix theory and
gave the first-order and second-order necessary optimality conditions and a glob-
ally convergent algorithm [4]. Rapcsák introduced a new coordinate representation
and reformulated it to a smooth nonlinear optimization problem, then by using
Riemannian geometry and the global Lagrange multiplier rule, local and global,
first-order and second-order, necessary and sufficient optimality conditions were
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stated, and a globally convergent class of nonlinear optimization methods was sug-
gested [13, 14].

In the paper, solution methods and techniques are investigated for optimization
on Stiefel manifolds with some particular problem instances and the solution of
those are given. Consider the following optimization problem:

min
k∑

i=1

xT
i Aixi, (1)

xT
i xj = δi,j , 1 ≤ i, j ≤ k, (2)

xi ∈ Rn, i = 1, . . . , k, n ≥ 2,

where Ai, i = 1, . . . , k, are given symmetric matrices, and δij is the Kronecker delta.
Furthermore, let Mn,k denote the Stiefel manifold consisting of all the orthonormal
systems of k n-vectors. Let us introduce the following notations:

x = (x1,x2, . . . ,xk) ∈ Rkn,

f(x) =

k∑

i=1

xT
i Aixi.

The structure of the Stiefel manifolds can be characterized as follows:

Theorem 1.1. [14] The set Mn,k is a compact C∞ differentiable Stiefel manifold
with dimension kn− k(k+1)

2 for every pair of positive integers (k, n) satisfying k ≤ n.
The Stiefel manifolds are connected if k < n. In case k = n, the Stiefel manifolds
are of two components.

The constraints (2) of problem (1) can be written as

xT
i xi = 1, i = 1, . . . , k, (3)

xT
i xj = 0, i, j = 1, . . . , k, i 6= j, (4)
xi ∈ Rn, i = 1, . . . , k, n ≥ 2.

It follows from the orthogonality that n ≥ k ≥ 2.
In the paper we optimize (1)-type quadratic functions with quadratic con-

straints. In the literature of optimization there are not too many efficient methods
which give good approximation to this problem, moreover, providing feasible so-
lutions for it is also a difficult problem [9]. That is why, special instances of the
original problem are investigated. Some important particular cases and problem
instances are considered in details. We characterize the structure of the optimizer
points and give a criterion for the finiteness of the number of the optimizer points
on M2,2 of (1)-(2) in the case of diagonal matrices Ai, i = 1, . . . , k. In this case all
the coordinates of the optimizer points are from the set {0,+1,−1} (except for the
extreme case when all feasible points are optimizer points, as well).
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2. Previous results — as motivation facts

In [1, 3] solution methods and techniques are given for the numerical optimiza-
tion of problem (1)-(2): reduction steps and numerical results are presented there.
We studied the same problem (as given above) numerically to understand the struc-
ture of the problem and investigated an example with a diagonal coefficient matrix
by using a stochastic method [6] and a reliable one [5, 10]. The aim of the last one
was to obtain verified solutions. It is interesting that by using the GlobSol program
[5, 10], verified solutions are obtained only when making spherical substitutions,
while for a similar problem on M3,3, the program is running for a few days with-
out providing verified solution — if no coordinate transformation or reduction of
the variables was made. Thus, it seems indispensable to use some reduction tricks
to make the numerical tools effective. Some accelerating changes are suggested in
the paper. We are focusing again on special problem instances when the coefficent
matrices in the objective function are diagonal.

The difficulty of the reliable numerical optimization is illustrated in [1, 3]: as
reported there a simple example of [2], which is given on M2,2 with diagonal co-
efficient matrices requires about 3 million function evaluations (out of which 2.9
million are dense constraint evaluations) by using the GlobSol software [5, 10].
Furthermore, the received boxes are not verified, although, we know that they do
contain the optimal solution. Only the version with the polar form gives verified
solutions. A not too complicated optimization problem on M3,3 required about 3.5
days of CPU time on our computer and gave 36 different non-verified solutions
with different function values by using the GlobSol program [5, 10]. However, the
hull of the non-verified boxes is about 10−24 times smaller than the starting one.
The correctness of these values is very hard to be checked, because this question
is equivalent with the original problem. That is why, it makes sense to investigate
special problems on Mn,k to test the efficiency and reliability of our algorithms.
The advantage of the consideration of test problems like this is that we can have
functions easier to handle: the optimizer points and optimum values are known on
an arbitrary Mn,k Stiefel manifold.

In [1, 2] and in [3] we have seen that in several problem instances we have
obtained results where every vector lies on an n-dimensional coordinate axis (that
is, one of their coordinate is 1 or −1, and the n − 1 other coordinates are zero).
Here, in the paper it is proven that if the coefficient matrices are diagonal on M2,2,
then the optimal solutions’ type is the above (one the exception when the function
is constant on the whole M2,2). In such cases all solutions are from the set of the
crossing points of the n-dimensional hypersphere and the coordinate axes. In other
words, not only the given problems and test problems have solutions of this type,
but also other problems can have similar solutions. The common feature of these
problems is that the objective function has only squared terms. In the paper we
are focusing on the same type of problems.

In [2] the latter fact motivated us to restrict the feasible solution set of the prob-
lem, and (in the paper) consider the problem (1)-(2) on a special Stiefel manfold,
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i.e. the Stiefel manifold of the plain, M2,2. It has been demonstrated earlier that
a simple (9-variable) problem on M3,3 runs for a period longer than 3 days on an
average computer supposing we require reliable results. That is why, the possible
speed up improvements should be investigated theoretically both in geometrical
reduction and regarding the numerical tools. Hence, we must have appropriate test
problems and special problems with known solution-sets.

The above result can be non-verified as it has been seen, as well. Due to this
fact in [2], we gave a series of test problems with arbitrary size (where n and k
are parameters). These belong to an important area of the global optimization
(see [7] and [8]), to the constrained test problems which are, generally, related
to industrial applications. The given test functions have optimizer points, known
ones, and optimal function values. A restriction, discretization of the problem is
formulated, which is equivalent to the well-known assignment problem. Theoretical
investigation is given for the discretization of the problem (1)-(2) in [2], as well.
The restriction, discretization of the problem which is formulated is equivalent to
the well-known assignment problem.

First, let us consider a problem of type like this, with a low dimension number,
to examine what type of elementary geometric tools can be applied to simplify the
problem. After the solution (of this), it is possible to apply some numerical opti-
mization tools, and observe what type of these prove to be applicable for this type
of problems or particlular problem instances and stay applicable after generalizing
the problem for higher dimension.

We characterize the structure of the optimizer points of a quadratic function
on M2,2 (which is the Stiefel manifold of the unit circle) which is the same as the
one analyzed in [13] and [14]. First, take a simple function on the unit circle into
consideration, then the structure of the optimizer points is given for (1) on M2,2

in particular cases of diagonal and then for arbitrary diagonal Ai (i = 1, . . . , k)
matrices. We consider some equivalent and some similar examples in order to give
different solution techniques for the optimization problem.

3. Optimization on M2,2: a simplification method

Problem (1) will be examined, with the special case of n = 2 and k = 2. First, a
special case with diagonal coefficient matrices will be examined through particular
problem instances. Subsequently, the generalization of this will be analyzed on
M2,2 with arbitrary, diagonal coefficient matrices. This special case of (1) occurs
frequently in applications. For this cases, also the structures of the optima will be
given.
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3.1. Examples with diagonal coefficient matrices on M2,2

Example 3.1. Let us examine the following problem [14]:

min f(x) = x2
1 +

1
2x

2
2 + x2

3 +
3
2x

2
4

subject to

x2
1 + x2

2 = 1,

x2
3 + x2

4 = 1, (5)
x1x3 + x2x4 = 0,

x = (x1, x2, x3, x4)
T ∈ R4.

It will be shown that the two important components of the Stiefel manifoldM2,2,
the global minimizer and maximizer points (and also the corresponding values of
the objective function) can explicitly be calculated for problem (5). It follows from
the equalities

x2
1 = 1− x2

2,

x2
3 = 1− x2

4, (6)
x2
1x

2
3 = x2

2x
2
4,

that x2
1(1− x2

4) = (1− x2
1)x

2
4, i.e.,

x2
1 = x2

4 and x2
2 = x2

3, (7)

and with the constraints of (5), we obtain that either

x1 = −x4

x2 = x3,

}
or

{
x1 = x4

x2 = −x3.
(8)

Thus, the two components of the Stiefel manifold M2,2 can be given in the form of

M2,2 = {x ∈ R4 | x2
1 + x2

2 = 1, x1 + x4 = 0, x2 − x3 = 0} ∪
{x ∈ R4 | x2

1 + x2
2 = 1, x1 − x4 = 0, x2 + x3 = 0}. (9)

By using the above equalities, we obtain that the objective function on M2,2 is
equal to

x2
1 +

1

2
x2
2 + x2

3 +
3

2
x2
4 =

5

2
x2
1 +

3

2
x2
2 = x2

1 +
3

2
(x2

1 + x2
2) = x2

1 +
3

2
,

thus, the global minimizer points are

(0,±1,±1, 0).

Hence, the global minimum value is 3/2, while the four global maximizer points
are

(±1, 0, 0,±1)T ,

and the global maximum is 5/2.
Here, all cases of ± are possible with no dependence between the respective

values.
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Example 3.2. The next problem to be optimized is

f(x) = 2x2
1 + x2

2 − 2x2
3 + x2

4, x ∈ M2,2. (10)

By using again the technique presented in (6–7), function f can be given on
M2,2 in the form of

2x2
1 + x2

2 − 2x2
3 + x2

4 = 3x2
1 − x2

2.

Here, the first constraint of Example 3.1 can also be used to simplify the present
function f(x) to a one-dimensional one. Another possibility is to consider the func-
tion 3x2

1 − x2
2 directly: on the unit circle its possible minimal value is equal to −1.

It is attained at the feasible points of (0,±1). Thus, the minimum value on M2,2

is −1, and there are four solutions of the 4-dimensional problem:

(0,±1,±1, 0).

The maximizer points on M2,2 can be obtained in a similar way:

(±1, 0, 0,±1),

and the maximum value is 3.

3.2. The solution of problems with diagonal coefficient matri-
ces on M2,2

We can generalize the method used for Example 3.1 in Subsection 3.1 for cases
when the objective function of the problem can be given as ax2

1 + bx2
2 + cx2

3 + dx2
4,

with x ∈ M2,2 as constraint(s),

min f(x) = ax2
1 + bx2

2 + cx2
3 + dx2

4

subject to

x2
1 + x2

2 = 1,

x2
3 + x2

4 = 1, (11)
x1x3 + x2x4 = 0,

x = (x1, x2, x3, x4)
T ∈ R4,

where a, b, c, d ∈ R are given real numbers.
It can be seen easily that this problem corresponds exactly to the case of (1)

when the coefficient matrices are diagonal. In general, it has a lot of applications
[2, 15]. We may use the same reduction technique as earlier in the previous case
(for example (9)), and the new function is of the form (a+ d− b− c)x2

1 + (b+ c).
It is obtained that if we consider the M2,2 problem (1) with diagonal coefficient
matrices, it is always equivalent with a one-dimensional optimization problem (as
we already know from Theorem 1.1): The minimization (maximization) problem
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is equivalent to the minimization (maximization) of a one dimensional quadratic
function, namely, it can be given as

Ax2
1 + C, x1 ∈ [−1, 1] ⊂ R, (12)

where A = a + d − b − c, A ∈ R, C = b + c, C ∈ R are constants. The following
assertion summarizes the result of our observations up to this point, and gives the
structure of the optima.

Lemma 3.1. For optimization problem (11) the following statement holds: The
problem has 4 different minimizers and maximizers, respectively, if A = a+d− b−
c 6= 0, otherwise, it has a continuum of those.

Proof: After making the transformation (using (9)) as above, we obtain the form
(12) of (11). We can distinguish three cases.
1. (When) A > 0 (the case when a+ d > b+ c). Then, the above function takes its
minimum when x1 = 0, and the value of the minimum is C(= b+ c), at the points
of

(0,±1,±1, 0).

Thus, there are exactly 4 minimizer points. The maximum value is equal to a+ d
(= A+ C), and is attained at the points of

(±1, 0, 0,±1).

2. If A < 0 (a+ d < b+ c), then the above minimizers will be the maximizers, and
vice versa. The minimum changes to A+C, the maximum to C. It means that the
minimum is equal to a+ d at

(±1, 0, 0,±1),

the value of the maximum is b+ c at

(0,±1,±1, 0).

3. In the case when A = 0, the objective function is a constant one (a+d (= b+ c)
at every point of M2,2), thus, all feasible points are optimal. ¤

Summary: we have obtained the solution of (11) problem, defined on M2,2. It
has been seen in cases 1−3 that the two important components of the Stiefel man-
ifold M2,2, the global minimizer and maximizer points (and also the corresponding
values of the objective function) can explicitly be calculated for the problem (11)
when a+ d 6= b+ c. If a+ d = b+ c, then the function is a constant one, so every
element of M2,2 are a minimizer and maximizer, at the same time. Some further
notes:

• The conclusion of case 1 corresponds, naturally, to what we have obtained
for problems (5) and (10).
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• Furthermore, it can be seen easily that it would be sufficient to optimize the
obtained function for x1 ∈ [0, 1] rather than for x1 ∈ [−1, 1], because of the
symmetry of the problem.

• Note that we could have obtained similar quadratic expressions such as (12),
with lacking terms in x2, x3 and x4, as well.

It is an interesting question whether this idea can be applied or generalized for
problems in larger dimensions. The other question is whether the solution technique
could be generalized accordingly.

4. Conclusions and future work

It has been demonstrated earlier that the solution algorithm of a simple (9-
variable) problem on M3,3 is running for a period longer than 3 days on an average
computer if reliable results are required. That is why, the possible speed up im-
provements should be investigated theoretically both in geometrical reduction and
in the numerical tools. Hence, we had to study special test problems. In [2] test
examples were given with known solutions to measure the efficiency of the numer-
ical tools. An interesting restricted problem was presented and discussed there, as
well. Here, in the paper also a special case of the problem, namely, when the Ai

coefficient matrices (i = 1, . . . , k) are diagonal, has been analyzed in details. The
solution structure of the problem (1)-(2) is characterized for this case of (1) on a
special Stiefel manifold: the Stiefel manifold of the plain. Here, the number of min-
imizer points is finite, except for a special case (when the function is a constant).
The particular problem instances dealt with, and the previous well solvable special
problem class on M2,2 can be provided as test functions, for the numerical tools,
as well.

Our plan for the future is to decrease the computational complexity by us-
ing these reduction possibilities, or polar form, or symmetric possibilities of the
manifold as a feasible point set or symmetry of objective function. The question
is which bound is possible. There are other possibilities to shift the bound of the
manageable problems, e.g., by using penalty functions. We plan to apply other
computational tools as a new constraint-handling global optimization method [11],
[12], as well as the consideration of symbolic algebraic tools. These are the aims of
future investigations.
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