
6 th International Conference on Applied Informatics
Eger, Hungary, January 27–31, 2004.

Building a Web-based Health
Promotion Database

Ádám Rutkovszky

University of Debrecen, Faculty of Economics
Department of Economics

Abstract

A survey of health promotion programs in Hungary was conducted by the
School of Public Health at the University of Debrecen’s Medical and Health
Science Centre. A questionnaire was sent out to institutions and organiza-
tions. A data model for storing information on the completed questionnaires
was developed, and a database was built up. A web-based application was de-
veloped for both querying and administering the above-mentioned programs.

This paper investigates some crucial questions that may arise during the
development of such applications. We describe the problems related to user
authentication in web-based solutions, which is essential when using limited
access or web-based administration. Data validation techniques that can
be applied in the case of form-based user input are also examined. General
application-level web security problems including form modification and SQL
attacks are described. To achieve greater publicity for a web page or web
site it is important to register it with search engines. The submission of
information contained in databases to search engines raises some interesting
questions, and is also discussed herein.

An example is given for the implementation of a possible solution to each
of these problems, also describing the hardware and software environment of
the application created.

1. Introduction

Since the beginning of the 90’s the World Wide Web has acquired a great
popularity. The web has evolved from a handful of sites containing mainly static
pages to millions of information repositories fed by databases. The web has become
a standard interface for sharing information across geographical boundaries.

Organisations publish their knowledge on the web using dynamic pages, the
content of which is stored in databases. Several scripting languages have been
developed for accessing data stored in databases and displaying them on web pages.

231

232 6 th International Conference on Applied Informatics

One of the most popular subsets of these languages is the group of open source
server-side scripting languages. According to a Netcraft survey [1] from January
2004 PHP is used at more than 14,000 domains. A report published on 1 January
2004 by SecuritySpace [2] showed that PHP is the most popular of the Apache
modules, with a penetration rate of nearly 54%. This makes PHP the most popular
open source server-side scripting language on the Apache platform. The trio of
Apache+PHP+MySQL can be regarded as a common technology for “low budget”
web application projects.

The development of applications displaying content stored in databases using
server-side scripting presents us with some common problems. This paper examines
these problems and explores the possible solutions. Implementation is described
using an operating web-based database application called Health Promotion Data-
base as an example.

The rest of the paper is organised as follows: section 2 gives an overview of the
Health Promotion Database. In section 3 we discuss user authentication solutions.
Section 4 describes problems of form handling. In section 5 we explore difficulties
of submitting database content to search engines, and finally, section 6 gives a
summary of the main conclusions and future tasks.

2. The Health Promotion Database

A research on health promotion programs in Hungary was conducted by The
School of Public Health at University of Debrecen, Medical and Health Science Cen-
tre. A questionnaire was sent out to institutions and organisations. The completed
and returned questionnaires were categorised according to the following criteria:

¥ City

¥ County

¥ Complexity

¥ Data-provider

¥ Coordinator

¥ Site

¥ Education of the target group

¥ Employment of the target group

¥ Other characteristics of the target group

¥ Health field

¥ Total cost

Á. Rutkovszky: Building a Web-based Health Promotion Database 233

Categories city, county, complexity, location, education of target group, em-
ployment of target group, health field can have multiple values.

A data model for storing the information from completed questionnaires was
developed and a database created. The questionnaires were converted to pdf for-
mat. The software platform was provided by The School of Public Health and had
the following characteristics:

¥ Operating system: Microsoft Windows NT

¥ Web-server: Microsoft IIS

¥ Database management system: Microsoft SQL Server

¥ Scripting language: PHP 4

The web application for publishing information on the returned questionnaires
basically consists of two modules: a query module and an administration module.

The query module [Figure 1.] can be regarded as the public part of the appli-
cation since it is accessible without any restrictions. This module provides func-
tionality for searching the database. The administration module [Figure 2] has
restricted access and provides functionality for managing programs and properties.

Users visiting the site can search the database by filling in a search form
(search_form.php) and sending it to a script (search.php), which then creates the
appropriate SQL queries and sends them to the database. The database runs the
queries and sends the results back to the script, which finally generates the HTML
output.

Figure 1.

Application administrators can upload programs using the web interface of the
administration module. Pages belonging to this module can be accessed after
successful authentication. After successfully logging in, the administrator can select
the following options from the main menu:

234 6 th International Conference on Applied Informatics

¥ Upload new health promotion program,

¥ Delete health promotion program stored in the database,

¥ Add new value to a category,

¥ log-out

The number of health programs currently stored in the database is also displayed
on the main menu.

Figure 2.

3. User authentication

Authenticating users is a basic requirement when using web-based administra-
tion in a web application.

A possible solution for protecting pages of the application is to use the tools
provided by the web-server or the operating system. Limiting access using.htaccess
files on Apache web-servers is a possible means of forcing users to identify them-
selves. The drawback of this method is that the valid username/password pair is
not stored in the database. The fact that the password and the username given
by the user are sent plain (i.e. without encryption) is another disadvantage of this
solution.

Basic HTTP authentication uses a challenge/response scheme to authenticate
users attempting to access a password-protected page. The challenge process be-
gins when the user requests a file from a Web server. If the file is within a protected
area, the server responds by sending out a 401 (unauthorized user) string in the
header of the response. The browser detects that response and displays the user-
name/password dialog box. The user enters a username and password in the dialog
box, then clicks OK to send the information back to the server for authentication.

Á. Rutkovszky: Building a Web-based Health Promotion Database 235

If the username and password pair is valid, the protected file will be displayed to
the user. The access rights thus gained will be valid for as long as the user remains
within the protected area. However, if the username and password typed into
the dialog box cannot be authenticated, the dialog box will be displayed again,
prompting the user to try again. This cycle will be repeated until the proper
username/password combination is entered or the user gives up and slinks away.
Validation of the username and password pair can be performed against values
hard-coded in the string or values stored in the database. Basic HTTP authentica-
tion seems to be a better solution than using web-server provided functionality but
also has some drawbacks, since it can’t be used when using CGI version of PHP.
In our case we have the CGI version so we had to find a different solution.

A database-driven authentication method has been developed for the Health
Promotion Database, based on HTML forms for inputting the username and pass-
word, and PHP for validating the given pairs and cookies to store login information.
Every page within the administration module contains code that checks whether
the user is logged in or not. If not, then the browser is redirected to the page
containing the login form. As soon as a valid username/password pair is given the
browser receives a cookie with information indicating that the user is logged, and
including a timestamp. This timestamp guarantees the need for re-authentication
after 10 minutes of inactivity. A logout link is placed on every page of the ad-
ministrative module. When this link is clicked the logout script sets an invalid
timestamp in the cookie and the browser window is forced to close.

4. Form-handling

The most common way of inputting user data to web applications is form-based.
As in our Health Promotion Database, users fill in a form, which is then submitted
– at the click of a button – to a processing script. In most cases data validation is
carried out at the client-side after clicking the submit button, but before submitting
form-data to the processing script. This algorithm seems to guarantee that all data
posted to the database is valid. It should be borne in mind that form-data could be
encoded in the URL of the processing script (in case of a GET method page), and
therefore server-side validation is also necessary to ensure that the data used for
creating queries satisfies the set conditions. Constructing the query naïvely from
data posted by the client leads to a vulnerability whereby the user can execute
arbitrary SQL against the back-end database. The attack is best illustrated with
a simple example:

Consider an Employee Directory Website written in PHP, which prompts a user
to enter the surname of an employee to search for by means of a form-box called
searchName. On the server-side this search string is used to build an SQL query.
This may involve code such as:

236 6 th International Conference on Applied Informatics

$query = “SELECT firstname, tel, fax, email FROM person WHERE
lastname=’$searchName’";

However, if the user enters the following text into the searchName form box:

‘; SELECT password, tel, fax, email FROM person WHERE
lastname=’Rutkovszky

then the value of variable, $query will become:

SELECT firstname, tel, fax, email FROM person WHERE lastname=”;
SELECT password, tel, fax, email FROM person WHERE
lastname=’Rutkovszky’;

When executed on some SQL databases, this will result in Rutkovszky’s pass-
word being returned instead of his last name. (Even if only a hash of the password
is leaked, a forward-search attack against a standard dictionary stands a reasonable
chance of recovering the actual password.)

5. Submitting database content to search engines

Achieving greater publicity for a web site or web application requires submitting
the URL of the starting page to search engines. After submitting a URL a spider
tries to crawl the given sites. Using only static pages the spider will be able to crawl
the whole site following the links. Problems will begin when pages are generated
dynamically from the content of a database. Such pages are accessible for users
by following pages containing questions marks (?) or using forms to search the
database. When following links to dynamic pages it is quite possible for a spider
to get into a loop from which it cannot escape, therefore spiders such as Google’s
and HotBot’s will follow such a URL only to the first level. On the other hand,
spiders can’t fill in forms which makes content that only accessible through a form
invisible to them.

However, although hidden web crawlers do exist, they are not used by the
widely known search engines. This means that webmasters or authors of sites have
to make their pages visible to spiders. A webmaster may choose to optimise his or
her site so that all links to dynamic pages appear as ‘spider-friendly’ static links.
There are various URL rewriting tools that assist in doing this. Many of these
tools allow the ‘?’ in the URL to be replaced by a different character like ‘/’. The
drawbacks of this method are cited in [3].

Creating a table of contents (TOC) – a page containing links to the content
stored in the database – can be regarded as a possible solution to the problem
of invisible pages. In order for the TOC to be effective, it must be found by the
search engine spiders. If the default home page contains a link to the TOC page, a
spider will navigate to the TOC and then be able to find all linked content. A site

Á. Rutkovszky: Building a Web-based Health Promotion Database 237

map page is also a good place from which to link the TOC. The TOC itself can
either be created by hand which requires significant manual effort or be outputted
dynamically by a script.

In the case of the Health Promotion Database, the solution of generating a
TOC page linked from the home page has been chosen. The script for performing
TOC generation has yet to be written. It will run after successfully uploading a
new health promotion program with the help of the administration module.

6. Conclusion and Future Work

In this paper we have presented a web-based Health Promotion Database. We
have also demonstrated the general problems of developing web-based database
applications in server-side scripting languages. Problems of user authentication
and form handling have been discussed, and the difficulties involved in submitting
database content to search engines have been shown. We have put forward the idea
of creating a table of contents as a viable solution to these problems. Future tasks
includes implementation of the TOC.

References
[1] Netcraft: em Web server survey.

http://news.netcraft.com
[2] SecuritySpace: Apache module report.

http://www.securityspace.com
[3] YourAmigo: Spider Linker White Paper (YA4.010 Rev. 1.05).

http://www.YourAmigo.com

