
6 th International Conference on Applied Informatics

Eger, Hungary, January 27–31, 2004.

The effect of server’s breakdown on the
performance of finite-source retrial

queueing systems∗

János Roszik, János Sztrik

Department of Informatics Systems and Networks, University of Debrecen
e-mail: {jroszik,jsztrik}@inf.unideb.hu

Abstract

In this paper single server homogeneous finite-source retrial queueing sys-
tems are investigated. The server is assumed to be subject to random break-
downs depending on whether it is busy or idle. The failure of the server
may block or unblock the system’s operations and the service of the inter-
rupted request may be resumed or the call can be transmitted to the orbit.
All random variables involved in the model constructions are supposed to be
exponentially distributed and independent of each other.
The novelty of investigations is the different type of non-reliability of the
server. The MOSEL ( Modeling, Specification and Evaluation Language )
tool, developed at the University of Erlangen, Germany, was used to formulate
and solve the problem and the main performance and reliability measures
were derived and graphically displayed. Several numerical calculations were
performed to show the effect of the non-reliability of the server on the mean
response times of the calls, the overall utilization of the system, and the mean
number of calls staying at the server or in the orbit.

Categories and Subject Descriptors: C.4 [Performance of Systems]:
Modeling Techniques, Performance Attributes; G.3 [Probability and Statis-
tics]: Queueing Theory, Stochastic Processes; I.6.4 [Model Validation and
Analysis];
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1. Introduction

Retrial queues with quasi-random input are recent interest in modeling of mag-
netic disk memory systems [8], cellular mobile networks [9], and local-area networks
with nonpersistent CSMA/CD protocols [6] and star topology [5, 7]. Since in prac-
tice some components of the systems are subject to random breakdowns it is of
basic importance to study reliability of retrial queues with server breakdowns and
repairs because of limited ability of repairs and heavy influence of the breakdowns
on the performance measures of the system. For related literature the reader is re-
ferred to the works [2, 3, 10] where infinite-source non-reliable retrial queues were
treated.

In this paper, finite-source retrial queueing systems with the following assump-
tions are investigated. Consider a single server queueing system, where the primary
calls are generated by K, 1 < K < ∞ homogeneous sources. The server can be
in three states: idle, busy and failed. If the server is idle, it can serve the calls
of the sources. Each of the sources can be in three states: free, sending repeated
calls and under service. If a source is free at time t it can generate a primary
call during interval (t, t + dt) with probability λdt + o(dt). If the server is free
at the time of arrival of a call then the call starts to be served immediately, the
source moves into the under service state and the server moves into busy state.
The service is finished during the interval (t, t+ dt) with probability µdt+ o(dt) if
the server is available. If the server is busy at the time of arrival of a call, then the
source starts generation of a Poisson flow of repeated calls with rate ν until it finds
the server free. After service the source becomes free, and it can generate a new
primary call, and the server becomes idle so it can serve a new call. The server
can fail during the interval (t, t + dt) with probability δdt + o(dt) if it is idle, and
with probability γdt + o(dt) if it is busy. If δ = 0, γ > 0 or δ = γ > 0 active or
independent breakdowns can be discussed, respectively. If the server fails in busy
state, it either continues servicing the interrupted call after it has been repaired or
the interrupted request transmitted to the orbit. The repair time is exponentially
distributed with a finite mean 1/τ . If the server is failed two different cases can be
treated. Namely, blocked sources case when all the operations are stopped, that is
neither new primary calls nor repeated calls are generated. In the unblocked (in-
telligent) sources case only service is interrupted but all the other operations are
continued (primary and repeated calls can be generated). All the times involved
in the model are assumed to be mutually independent of each other.

Our objective is to continue the investigations which were started in [1] but
because of page limitations only some results were presented. The mean number of
requests staying in the orbit or in the service, overall utilization of the system and
the mean response time of calls are displayed as the function of server’s failure and
repair rates. To achieve this goal a performance tool called MOSEL (Modeling,
Specification and Evaluation Language), see [4], is used to formulate and solve the
problem.

The paper is organized as follows. In Section 2 the full description of the model
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by the help of the corresponding Markov chain is given. Then, the main perfor-
mance and reliability measures are derived that can be obtained using MOSEL
tool. In Section 3 several numerical examples are presented and some comments
are made. Finally, the paper ends with a Conclusion.

2. The M/M/1//K retrial queue with unreliable
server

The system state at time t can be described with the process X(t) =
(Y (t);C(t);N(t)), where Y (t) = 0 if the server is up, Y (t) = 1 if the server is failed,
C(t) = 0 if the server is idle, C(t) = 1 if the server is busy, N(t) is the number of
sources of repeated calls at time t. Because of the exponentiality of the involved
random variables this process is a Markov chain with a finite state space. Since
the state space of the process (X(t), t ≥ 0) is finite, the process is ergodic for all
reasonable values of the rates involved in the model construction, hence from now
on we will assume that the system is in the steady state. We define the stationary
probabilities:

P (q; r; j) = lim
t→∞

P (Y (t) = q, C(t) = r,N(t) = j), q = 0, 1, r = 0, 1, j = 0, ...,K∗,

where K∗ =

{
K − 1 for blocked case,
K − r for unblocked case.

Knowing these quantities the main performance measures can be obtained as fol-
lows:

• Utilization of the server

US =

K−1∑

j=0

P (0, 1, j).

• Utilization of the repairman

UR =

1∑

r=0

K∗∑

j=0

P (1, r, j).

• Availability of the server

AS =

1∑

r=0

K∗∑

j=0

P (0, r, j) = 1− UR.
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• Mean number of calls staying in the orbit or in service

M = E[N(t) + C(t)] =

1∑

q=0

1∑

r=0

K∗∑

j=0

jP (q, r, j) +

1∑

q=0

K−1∑

j=0

P (q, 1, j).

• Utilization of the sources

USO =

{
E[K−C(t)−N(t);Y (t)=0]

K for blocked case,
K−M

K for unblocked case.

• Overall utilization

UO = US +KUSO + UR.

• Mean rate of generation of primary calls

λ =

{
λE[K − C(t)−N(t);Y (t) = 0] for blocked case,
λE[K − C(t)−N(t)] for unblocked case.

• Mean response time

E[T ] = M/λ.

3. Numerical examples

In this section we consider some sample numerical results to illustrate graph-
ically the influence of the non-reliable server on the mean response time, overall
utilization of the system and mean number of calls staying in the orbit or in the
service. In each case the independent failure is considered and different compar-
isons are made according to service continuation (resumed, transmitted) and system
operations (blocked, unblocked).

In Figures 1–3 we can see the mean response time, the overall utilization of
the system and mean number of calls staying in the orbit or in the service for the
reliable and the non-reliable retrial system when the server’s failure rate increases.
In Figures 4–6 the same performance measures are displayed as the function of
increasing repair rate. The input parameters are collected in Table 1.

3.1. Comments

In Figure 1, we can see that in the case when the request returns to the orbit
at the breakdown of the server, the sources will have always longer response times.
Although the difference is not considerable it increase as the failure rate increase.
The almost linear increase in E[T ] can be explained as follows. In the blocked



J. Roszik, J. Sztrik: The effect of server’s breakdown on the performance. . . 225

K λ µ ν δ, γ τ
Figure 1 6 0.8 4 0.5 x axis 0.1
Figure 2 6 0.1 0.5 0.5 x axis 0.1
Figure 3 6 0.1 0.5 0.05 x axis 0.1
Figure 4 6 0.8 4 0.5 0.05 x axis
Figure 5 6 0.05 0.3 0.2 0.05 x axis
Figure 6 6 0.1 0.5 0.05 0.05 x axis

Table 1: Input system parameters

(non-intelligent) case the failure of the server blocks all the operations and the
response time is the sum of the down time of the server, the service and repeated
call generation time of the request (which does not change during the failure) thus
the failure has a linear effect on this measure. In the intelligent case the difference
is only that the sources send repeated calls during the server is unavailable, so this
is not an additional time.

In Figure 2 and Figure 5 it is shown how much the overall utilization is higher
in the intelligent case with the given parameters. It is clear that the continued
cases have better utilizations, because a request will be at the server when it has
been repaired.

In Figure 3 we can see that the mean number of calls staying in the orbit or in
service does not depend on the server’s failure rate in continuous, non-intelligent
case, it coincides with the reliable case. It is because during and after the failure
the number of requests in these states remains the same. The almost linear increase
in the non-continuous, non-intelligent case can be explained with that if the server
failure occurs more often the server will be idle more often after repair until a
source repeats his call.

In Figure 4, we can see that if the request returns to the orbit at the breakdown
of the server, the sources will have longer response times like in Figure 1. The
difference is not considerable too, and as it was expected the curves converge to
the reliable case.

In Figure 6, it can be seen that the mean number of calls staying in the orbit or
in service does not depend on the server’s repair rate in continuous, non-intelligent
case, it coincides with the reliable case like in Figure 3. It is true for the non-
continuous, non-intelligent case too, which has more requests in the orbit on the
average because of the non-continuity.

4. Conclusions

In this paper a finite-source homogeneous retrial queueing system is studied
with the novelty of the non–reliability of the server. The MOSEL tool was used
to formulate and solve the problem, and the main performance and reliability
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Figure 1: E[T ] versus server’s failure rate

Figure 2: UO versus server’s failure rate
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Figure 3: M versus server’s failure rate

Figure 4: E[T ] versus server’s repair rate
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Figure 5: UO versus server’s repair rate

Figure 6: M versus server’s repair rate
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measures were derived and analyzed graphically. Several numerical calculations
were performed to show the effect of server’s breakdowns and repairs on the mean
response times of the calls, on the overall utilization of the system and on the mean
number requests staying in the orbit or in service.
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