
6 th International Conference on Applied Informatics
Eger, Hungary, January 27–31, 2004.

Compiling P–GRADE programs for the
JGrid architecture∗

László Lövei

Department of Programming Languages and Compilers
Eötvös Loránd University, Budapest

e-mail: lovei@elte.hu

Abstract

Grid systems are large, geographically distributed computational environ-
ments. JGrid is a Grid infrastructure, that provides a software environment
for such systems. It is built on top of the Java-based Jini technology, which
provides a common platform and a service-based lookup system.

P–GRADE is an interactive, graphical software development tool, de-
signed to build distributed parallel programs using message passing for com-
munication. It is based on the GRAPNEL hybrid language, which uses
graphics to describe communication topology, main control structures and
communication actions, while sequential computations can be written in an
arbitrary programming language.

P–GRADE originally supported the C language using PVM or MPI mes-
sage passing libraries. This paper gives a description of a compiler pack-
age, which implements the GRAPNEL language using the JGrid system as
a communication infrastructure, and provides a compiler tool that translates
P–GRADE programs to the Java language using this implementation.

Categories and Subject Descriptors: D.3.4 [Programming Languages]:
Processors - code generation, compilers; D.1.3 [Programming Techniques]:
Concurrent Programming - distributed programming

Key Words and Phrases: GRID, Java, Jini, P-GRADE, compiler

1. Introduction

The JGrid project[1] aims to develop a Grid middleware using the Java-based
Jini[2] architecture, and to provide a graphical integrated development environment
to support writing distributed applications using this middleware. The P–GRADE

∗Supported by the Hungarian Infocommunications Technologies and Applications Programme
(IKTA), Grant Nr. 089/2002

197



198 6 th International Conference on Applied Informatics

environment[3] has been selected as an IDE, which supports not only application de-
velopment, but debugging, monitoring and analyzing as well. To adapt P–GRADE
to JGrid, the main task is to enable the translation of P–GRADE programs to the
Java language using the services of JGrid.

1.1. P–GRADE

P–GRADE stands for Parallel Grid Runtime and Application Development En-
vironment. Its main goal is to provide an integrated set of programming tools for
development of distributed programs using the message passing paradigm. P–
GRADE uses the Graphical Process Net Language (GRAPNEL). In fact, it is a
hybrid language, as it defines textual program parts as well as graphical structures.

Distributed programs written in GRAPNEL consist of three design levels, these
are called application, process and text level.

Application level. In this level the communication structure is given by a graph-
ical notation. Processes and process groups can be defined, every one of them can
be assigned communication ports, and these ports can be connected by channels.
Every channel has set of protocols assigned to it, which describes what kind of data
can be sent through the channel. An example of this level is shown in figure 1.

Process groups contain processes and other groups. These are given by the same
application level notation. There are special groups with predefined communication
structures, these are called communication templates. Predefined templates are the
Farm, Pipe and Mesh templates.

Figure 1: Application level of a P–GRADE program

Process level. Every process contains communication operations, which send or
receive messages through the ports connected to the process. This level specifies an
algorithm skeleton for the process, which contains every communication operation.
It is described graphically, as a program graph, which has loop and conditional
constructs, and contains sending, receiving and sequential steps.



L. Lövei: Compiling P–GRADE programs for the JGrid architecture 199

Text level. Sequential step mentioned at the process level are arbitrary computa-
tions, which do not contain any communication. These computations are described
in a traditional programming language, in our case, Java. These program parts are
given in plain text, and should be copied verbatim into the resulting program.

Sometimes these parts need information about the state of the P–GRADE pro-
gram. This is supported by functions defined in GRAPNEL. These functions return
various information about the communication structure and state of the calling
process.

1.1.1. Types of communication

The main role of P–GRADE from the view of application developers is that
P–GRADE connects the parts of the programs by graphically described commu-
nication operations. As these operations are the “heart” of P–GRADE, there are
many possibilities in them.

Point to point communication. Point to point message sending and receiving
is the most simple communication action. Receive operations always block the
process, and wait for an incoming message. Sending operations can be synchronous
or asynchronous.

Group communication. When more than one partner or a group is connected to
a communication port, every partner can be addressed in one step. This is called
group communication. Messages can be sent to a group using multicast semantics,
which means that the same data is sent to every partner, or scatter semantics,
when every partner is sent different data. Receive semantics is called gather, which
means that one message is received and stored from every partner.

Alternative receive. There is one special kind of receive operation called alter-
native receive. This operation can use more than one ports and groups as message
sources, and receives exactly one message from them, the first one that is available
at the time of the operation.

1.2. The JGrid architecture

JGrid is a Grid middleware that provides an infrastructure to connect a large
number of computers and use their resources as if they were a single virtual com-
puter. It supports different architectures by the use of the Java platform, which
hides the architectural differences by defining a common Java Virtual Machine.
Resources in JGrid are represented by services, which can appear or disappear at
any time. This approach provides a dynamic and scalable architecture. which is
essential in Grid systems.

The Jini technology. Services are supported by the Jini technology in JGrid. It
is an open network architecture designed to help client programs to find and use



200 6 th International Conference on Applied Informatics

services in a dynamic environment, and makes a good base for a Grid system[4].
Jini automates the service finding process by providing a Lookup Service, which
keeps track of available services. Every client and service can discover a Lookup
Service using a special discovery protocol. This protocol uses IP multicast, so it is
possible to automatically discover distant parts of a Jini network.

A client can look for a service that implements an arbitrary interface. It can
select one or more from the search results, and use it (or them). A client that uses
a service gets a lease, which expires after a given time. A lease can be renewed, so
it does not limit the usage of a service, but when one of the parties fails, the lease
expires, and a notification is sent, so the failure can be detected.

Services of JGrid. The JGrid system is a set of high level Jini services. The most
important service is the Compute Service that provides a computational resource. It
runs Java programs using the resource, this way exporting a Java Virtual Machine
into the Grid. Every program to be run must implement a Java interface called
Task. This interface is used to provide a context for the program, and to execute the
main method of the program in a thread of the Virtual Machine. A set of programs
can communicate with each other using the context, message sending operations
are available for this purpose. The JGrid system supports a Java binding of the
standard Message Passing Interface (MPI, see [5]).

Other services include a Storage Service, which provides disk space to store
data in a virtual filesystem; a Broker Service, which manages load balancing and
selecting the most appropriate resources for a task; and a Grid Access Point, which
handles authentication and authorization. These are important services, too, just
they are less significant in the P–GRADE compilation process.

2. Code generation

Our task is to generate Java code from a P–GRADE program, using the services
of JGrid. The most elegant approach to this is creating a library that supports every
language element of GRAPNEL. This way, generated code will be quite simple and
less error-prone. The other advantage is that the interface of the library can be
independent of the underlying communication architecture, so porting to another
communication system requires modifications in the library only.

As we have seen, in JGrid, every process is a Java object that can be run
using the Task interface. The library can support this by providing its interface
via inheritance. Every P–GRADE process class must be derived from a generic
process class, which implements the Task interface, and hides the details of the
JGrid system. In Java, requiring the use of inheritance is considered obtrusive,
because every class can have only one superclass, but as we want to provide an
interface for a generated code, which has no other purposes than implementing a
P–GRADE program, this limitation has no drawbacks here.

Using inheritance has one more advantage. The sequential code that is given
textually in GRAPNEL, uses function calls to gather information about the envi-



L. Lövei: Compiling P–GRADE programs for the JGrid architecture 201

ronment. These functions can be implemented as methods in the generic process
class, and this way they can be used directly by the sequential code, which will be
copied into the code of the derived class.

Every design level of P–GRADE needs its own library support. The application
level consists of process groups, which manage the communication topology of the
program. There is a special group, that contains the top level processes and groups
of the application, and contains the code that starts the whole program. The
process and the text levels has their support in the generic process class, which
supports the communication operations directly, and provides methods for the
textual code.

2.1. Application level code

Application level is mainly responsible for building the communication topology
of the processes. The support class has methods for defining process and group
instances, and for connecting their ports. An example of an application level gen-
erated code is shown in figure 2.

public ForkApp() {
super(4);
createProcess(PROC_Input, new Input_code());
createProcess(PROC_Fork, new Fork_code());
createProcess(PROC_Out1, new Out1_code());
createProcess(PROC_Out2, new Out2_code());

}

protected void init() {
connectPorts(PROC_Input, Input_code.PORT_0,

PROC_Fork, Fork_code.PORT_0);
connectPorts(PROC_Fork, Fork_code.PORT_1,

PROC_Out1, Out1_code.PORT_0);
connectPorts(PROC_Fork, Fork_code.PORT_1,

PROC_Out2, Out2_code.PORT_0);
}

Figure 2: Generated code of the application in figure 1

In GRAPNEL, processes and groups are referred to by their names. In the other
hand, the implementation is better with using sequential integer identifiers. Even
port numbers are bad for this purpose, because they might not be assigned strictly
sequentially. So, processes and groups define constant names for processes, groups
and ports contained in them. The identifiers in the example, like PROC_Input or
PORT_0 are such ones. The classes, like Input_code, has their names derived from
the real process names, and contain the code of the process. The library calls in this



202 6 th International Conference on Applied Informatics

level are quite straightforward, every call matches an element in the P–GRADE
program (see also figure 1).

2.2. Process and text level code

The generated Java code of the processes contains the implementation of the
communication operations of the process design level and the textual code from
the text level. The latter is the simpler, its “generation” involves copying only. The
former is more complicated, it requires the implementation of the program graph
and the communication operations.

A program graph contains conditional and loop nodes, these can be imple-
mented by simple if and while statements. Sequential nodes are textual program
blocks, which are copied verbatim. Communication operations are more complex,
not only because there are many types of them, but there is the problem of proto-
cols: the protocol interpreter code cannot be implemented in the support library,
it must be generated individually for every protocol.

initSend(PORT_0, 0, true);
pkint(count);
for (int __pr=0; __pr<3; ++__pr)

pkdouble(data[__pr]);
send(0);
initRecv(PORT_0, 0);
recv(0);
count = upkint();
data = new double[3];
for (int __pr=0; __pr<3; ++__pr)

data[__pr] = upkdouble();

Figure 3: Generated code for message sending and receiving

An example of a simple protocol is shown in figure 3, as part of a point to
point sending and receiving operation. The protocol consists of an integer and a
triplet of floating point data. The communication action in the example uses the
variables count and data to store data. Interpreting the protocol means storing
or retrieving data to or from the message buffer. Communication of type scatter
or gather involves using of array element access at each variable, as using them
requires storing different data for every partner.

Group communication is implemented by point to point operations, as shown
in figure 4. When different members of a group should receive different data, there
is no other way to perform the operation.

Alternative receive is a special case, because different partners may use dif-
ferent protocols, and data may have to be stored in different variables. Protocol
interpreter code for alternative receive operations therefore consists of conditional
blocks. Each protocol that appears in the operation has a conditional branch that



L. Lövei: Compiling P–GRADE programs for the JGrid architecture 203

interprets that protocol, this way the correct interpreter code is selected during
run time.

P3

P5

P1

P2

P4

P2

P4

P3

P5

P1

G1

Figure 4: Implementation of group communication by point to point operations

3. Library implementation

As we said before, the task of the support library is to provide an easy-to-use
interface for the generated code by implementing GRAPNEL language elements.
The interface should hide every JGrid-specific aspect of the implementation, so
that generic Java code can be generated using the library.

There are two main areas where a real JGrid implementation is needed for
the abstract interface: the starting of a program and the communication. Every
other element of GRAPNEL can be implemented by this core (like communication
templates and protocol interpretation) or does not need any library support (like
loops or conditionals in processes).

3.1. Program startup

The startup phase of a program begins when the application is started on a
JGrid client machine, and ends when the processes are ready to be run at the
Compute Service nodes. Process objects are created by the generated application
code, so library support is only needed for communication channel definition and
process distribution among the nodes.

As the process objects will be sent through the network, they cannot have
any Java references to each other. This means that channel definition must be
done using primitive values. Every process object gets a communication ID; JGrid
supports the MPI standard, in which this ID is an integer sequence number. A
channel endpoint is defined by this ID and a port number. During the channel
definition phase of the startup, these endpoint identifiers must be distributed among
the processes.



204 6 th International Conference on Applied Informatics

When every process knows its partners’ identifiers, they can be sent to the
nodes where they will be run. This is done by the JGrid system, the only task
of the library here is to provide an abstract interface for this operation, that is,
the application program just have to call a method to distribute and start the
processes.

3.2. Communication

The communication interface of the support library provides a message buffer,
and methods to fill it with data, read data from it, send the buffer to other
processes, and to receive data from other processes into the buffer.

The methods that handle the contents of the buffer are implemented by the
standard Java serialization routines. P–GRADE requires only primitive data to
be sent, but this approach gives the possibility to transfer any serializable object
between the processes.

In P–GRADE, every channel can be assigned more than one protocols. These
protocols have an integer identifier in P–GRADE, which can be used by the im-
plementation to make a distinction between messages of different protocols. The
MPI standard defines a so-called message tag, which can be used to filter messages
coming to a process. This is needed to implement a receiving operation which
accepts data of only one protocol.

Data transfer. As we have seen, every communication operation can be imple-
mented by point to point sending and receiving. So it seems that simple point to
point MPI operations are enough to implement the support library. Every send and
receive operation can be done by an asynchronous, blocking MPI send or receive
call – except alternative receive.

Alternative receive can be implemented in MPI, but it requires non-blocking
receive operations. A non-blocking MPI call returns a request identifier, which can
be checked later to see whether the operation has been finished or not. It is possible
to have a set of requests, and wait for any of them to complete. This matches the
alternative receive exactly. It has only one problem: when more than one source
sends data, still only one of them is processed. Requests which are not processed,
must be saved and used in the next receive operation, even if it is a point to point
operation.

The solution is to use non-blocking MPI operations everywhere. Every com-
munication partner has a pending request associated with it, and every receive
call uses these requests. A point to point operation uses only one, an alternative
receive uses more; after the operation, the completed request is restarted to make
sure that the next receive operation can use a valid request.



L. Lövei: Compiling P–GRADE programs for the JGrid architecture 205

4. Summary

The JGrid project aims to build a service-based Grid infrastructure. Besides
creating the services, it is important to provide tools for the users of the infrastruc-
ture, including support for application development. P–GRADE is well suited
for this task, as it covers one of the main areas of Grid application development,
distributed programming.

P–GRADE must have been adapted to JGrid. The main task in the adaptation
was the creation of the compiler that translates GRAPNEL programs to Java. Code
generation was designed to be as easily maintainable and extendible as possible.
It was achieved by creating two layers: a support library and a code generator.
The latter outputs generic Java code, which is independent of the infrastructure
it runs on. The library contains the implementation details, it can be much easily
modified for other platforms than the code generator.

In the JGrid project both the library and the code generator has been imple-
mented and tested. Experiences of the development and testing have shown that
we have succeeded in creating a working and easily extendible compiler package.

References
[1] Z. Juhász, R. Lovas, P. Kacsuk: JGrid: A Jini-based Service Grid, IEEE International

Conference on Cluster Computing (Cluster 2003), pp. 28-30.
[2] Jini Network Technology

http://www.jini.org
[3] P. Kacsuk, G. Dózsa, R. Lovas: The GRADE Graphical Parallel Programming Envi-

ronment, Parallel Program Development for Cluster Computing, Methodology, Tools
and Integrated Environments, Nova Science Publishers, Inc. pp. 231-247, 2001.

[4] Sz. Póta, K. Kuntner, Z. Juhász: Jini network technology and Grid systems, Proc.
MIPRO 2003, Hypermedia and Grid Systems, Opatija, Croatia, 19-23. May 2003.,
pp. 144-147.

[5] Message Passing Interface Standard 1.1
http://www.mpi-forum.org/docs/mpi-11.ps

[6] Zoltán Csörnyei: Compiler algorithms, Erdélyi Tankönyvtanács, Kolozsvár, 2000 (in
Hungarian).


