
6 th International Conference on Applied Informatics
Eger, Hungary, January 27–31, 2004.

Understanding Design Patterns as
Constructive Proofs∗

Szabolcs Máriena, Gábor Kusperb

a Department of Computer Science, University of Debrecen e-mail:
mariensz@delfin.klte.hu

b Department of Computer Science, University of Debrecen e-mail:
gksuper@delfin.klte.hu

Abstract

Design Patterns have a quickly expanding literature. A big part of the
literature tries to formalize Design Patterns. These works set up a language
that is suitable to describe object oriented properties and formalize several
Design Patterns in this language. We follow the same pattern. First we set up
a very simple set based language and formulize the Abstract Factory design
pattern. To be correct, we formalize the first part, the problem specification
part of Abstract Factory. The second part, the problem solution, is usually
overlooked in the literature. We formalize the problem solution part, too. We
understand the problem specification of a design pattern as an existentional
logical form and the problem solution as a constructive proof. The problem
specification states that some special class or object exists and the problem
solution gives a recipe how to construct this class or object. Our set based
language is suitable to formalize the constructive proof, which is hidden in
the GoF book textual formulation.

Categories and Subject Descriptors: D.1.3 [Programming Techniques]:
Design Patterns

Key Words and Phrases: Design Pattern, Formal specification of Design
Patterns

1. Introduction

What was the reason of appearance of the Design Patterns in software engi-
neering? After the object oriented technologies were widely used, there weren’t

∗Sponsored by Upper Austrian Government (scholarship), FWF SFB F013 (P1302) and
Austro-Hungarian Action Foundation.

169



170 6 th International Conference on Applied Informatics

guarantees for that, the founded solutions for the rising problems meet the re-
quirements of the object oriented designing solutions. The expectation is that,
expert designers will have used similar proven designs to resolve similar problems
in different application domains [7]. How can be collected this designer professional
knowledge in other to avoid the designer failures?
The profession recognized the necessity of that the same designing cases should
have to be recognized and provide for those standardized designing solutions. The
results of general designing solutions are the Design Patterns. A Design Pattern
reflects a generic aspect of a particular system. The collection of them (list of 23
Design Patterns) is specified in the [5].

2. Key issues of Design Patterns

2.1. Formal specification of Design Patterns

The aims, arguments and objections of the formal specifications are very well
collected in the [2]. Some of these collections can be found in the following examples
Objections: [2]

Formal specifications contribute little or nothing to the understanding when
and how to use Design Patterns.
Patterns are abstractions, or generalizations, and therefore are meant to be vague,
ambiguous and imprecise. If they were specified in a precise form, or expressed in
mathematical terms, they would no longer be patterns [3].
Arguments: [2]

It’s a primarily a matter of opinion, or personal intuition, weather formalisms
are important or not. Nevertheless, ambiguous descriptions are obstacle in resolving
details of implementations, which require complete and accurate understanding of
the solutions.
It’s wrongly assumed that exact or formal specifications can only describe concrete
entities, and in order to be general one has to be vague. A specifications can be
precise and general at the same time.
Which elements have to comprise the Design Pattern specifications ?

There are decided information about a Design Pattern - accordingly of the
convention of specification by natural languages for example in the [5] -, which a
Design Pattern specification has to comprise.
Required elements (accordingly the [5]):
Patterns Name and Classification, Intent, Also Known As, Motivation, Applicabil-
ity, Structure, Participants, Collaborations, Consequences, Implementation, Sam-
ple Code, Known Uses, Related Patterns
What was the reason of the introduction of new formalization languages?

Bypassing the ambiguous interpretation of the natural languages. The speci-
fications of the Design Patterns are specified with natural language details in the
[5], which are not accurate specification forms.
Avoiding the narrowing side-effects.



Sz. Márien, G. Kusper: Understanding Design Patterns as Constructive Proofs 171

2.2. Collaborations of Design Patterns

As mentions above, using the collaboration facilities of patterns, the all design
can be constituted as patterns’ construction.
There are lots of compartments of the exists languages for the specifications of
the collaborations. As [2] showed, all of the most important resent specification
languages have compartments for analyzing this aspect of Design Patterns. The
way of these researches are enforced by the components based architectures, because
on that part of the developments the discovering the collaborations of the patterns
base the system components architect, therefore the risk of the development is
reduced with avoiding the big blunders.

3. Problem statement

3.1. Which properties of patterns can be caught by formal-
ization?

There are lots of formal specification languages, with which the Design Patterns
can be defined. However, one of the most important aim of these languages the
formal specification of the Design Pattern’s properties and manners, there is very
hard to define so formal language, which can be so ordinary, which doesn’t restrict
the generality of the Design Patterns. In some researchers’ opinion: If “the basic
structure is fixed. . . this isn’t pattern any more.”[4][2].

3.2. There isn’t facility for proofing the logical completion of
the Design Pattern

The primary aim of the creation of the specification languages was the bypassing
the ambiguous, which is rising when natural language is used for it. The other main
aspect of these solutions is that, the specified form of the Design Patterns consists
of the all property of the pattern. There isn’t any intention with these forms.

3.3. Excavation of Design Patterns can’t be automated

The excavation of the Design Patterns is very hard. There isn’t any solution for
take it easily at present. However the promotion the controlling of the competence
of the Design Patterns’ introduction during the designing tasks is possible.

Reason of it: There isn’t any formalization method, on which’s result statements
a proofing methodology can be applicable.

3.4. There isn’t facility for detection of the Design Patterns
in the design phase

Formal specifications contribute little or nothing to the understanding when
and how to use a pattern [2].



172 6 th International Conference on Applied Informatics

There isn’t existence method for promotion the recognizing of the Design Pat-
terns during the designing tasks. However the Patterns Detection Language (was
realized by Albin-Amiot and Guéhéneu[1]) can help formalizing patterns and de-
veloped build on PDL a source-to source transformation engine, with which the
patterns are detected in the source code, and if there are some mistakes in it, then
the engine could repair those. So, the name of the Patterns Detection Language is
ambiguous, because this specification language isn’t solve the problem of detection
of the Design Patterns in the design phase. It “just” can convert the knowledge
source to PDL and PDL to source.

If the automatic detection of the Design Patterns had to be solved in the design
phase, then the patterns would have to be caught in the model’s script. In this
case the cost end effort of development would been significantly reduced. Since the
designing failures can be repaired during the designing phase.

3.5. Conclusion

The resent specification languages can formalize the patterns by some additional
language, graphical, formalization tool, but there isn’t support for excavations of
the Design Patterns. The reason of it is that, just the excavated Design Patterns
can be formalized, and detected, but there isn’t facility for proofing the formalized
statement, with which the excavation of the Design Patterns in the designing phase
can be established.

4. Proposed Solution

4.1. Determination of the general properties

Which properties of Design Patterns can be specify without violation of the
generality of the patterns? This is the logical form of the patterns as existential
logical form.

There is a specification language, with which the patterns can be specified as
existential logical form, this is the LePUS [6].

First we set up a very simple set based language and formulize as example the
Abstract Factory design pattern. To be correct, we formalize the first part, the
problem specification part of Abstract Factory. We understand the problem speci-
fication of a design pattern as an existential logical form. The problem specification
states that some special class or object exists

4.2. Problem solution

The second part, the problem solution, is usually overlooked in the literature.
We try to formalize the problem solution, too, as a constructive proof. As men-
tioned above the problem specification states that some special class or object exists
and the problem solution gives a recipe how to construct this class or object. Our



Sz. Márien, G. Kusper: Understanding Design Patterns as Constructive Proofs 173

set based language is suitable to formalize the constructive proof, which is hidden
in the [5] book textual formulation.

4.3. Design phase Design Pattern excavation

The supplement of the logical proofing of the formalized pattern (as mentioned
in the previous paragraph) is necessary for realization of a design phase Design Pat-
tern excavation system, which can discover that components of the designs, which’s
formalized forms are logically right. This excavation method can be independently
from the specific information, because the logical statement doesn’t consist of case
specific information.
The collected logical formulates of a design model’s design components consists
of lots of logical forms, and some of them may be not excavated Design Patterns’
“footprints”, and therefore the excavation of these new possible Design Patterns are
more easily.

4.4. Design phase Design Pattern detecting

We invented a logical form of design patterns, on which with a language mapping
the patterns detection can be solved in the designing phase. Using the mapping
between the UML script of the design and the formulates and using the logical
formulates of the Design Patterns, the design phase Design Pattern detecting can
be automated and realized.

5. Introduction the specification language

In the literature we can found languages, which are suitable to describe the
problem specification part of design patterns.

We know that each design pattern consists of two parts, problem specification
and problem solution. Our goal is not to formalize all design patterns, but formalize
the problem solution part of Abstract Factory (AF) design pattern.

We know that a class consists of three parts, set of its methods, set of its fields
and initial state. An object consists of three parts, set of its methods, set of its
fields and actual state. The state of the object is the value if its fields. Methods
of an object operate on its fields. A method consists of four parts, name, formal
parameter list, return type, which is a class, and implementation. An interface
is a set of methods. An abstract class consists of three parts, set of its methods,
set of its fields and an initial state, but there are some methods, which have no
implementation. Since AF is a class creational pattern we do not need to deal
with objects to be able to formalize AF. So it is enough to deal with only classes,
abstract classes and interfaces. Since we need no objects we do not need to deal
with the initial state in classes and abstract classes. Since we do not need the
initial state we do not need to deal with fields. This means that classes, abstract
classes and interfaces are just set of methods.



174 6 th International Conference on Applied Informatics

We know that methods consist of four parts, name, formal parameter list, return
type, which is a class and implementation. Since we do not need states to formalize
AF we do not need the implementation of methods. Without lost of generality we
assume that in a set of methods each method has unique name. Hence, we do not
need the formal parameter list part of methods. This means that for our purpose
it is enough to define method as the ordered pair of its name of return type, which
is a class.
Definition 5.1. (Name)
N is a name if and only if N is a final set.
Definition 5.2. (Method)
M is a method if and only if M = (N, C), N is a name and C is a class.
Definition 5.3. (Class or Abstract Class or Interface)
C is a class (or abstract class or interface) if and only if C is a set of methods.
Definition 5.4. (GetName, GetReturnType)
GetName(M) = N and GetReturnType(M) = C, where M is a method, N is Name,
C is a class and M = (N, C).
Definition 5.5. (GetNames)
GetNames(C) = {GetName(M) | M in C}, where C is a class.

We define the Simp language.
Definition 5.6. (Simp Language)
A sentence is a sentence in Simp langue if and only if it is a first order logical
formula, which may contain the name, method and class (or abstract class or
interface) predicate and the GetName, GetReturnType and GetNames functions
and the usual set connectives, i.e., set of ({}) quantifier, subset (⊆), element (∈)and
equal (=) predicates and the power set function (P).

We define the basic notion, subclass, of object-oriented programming.
Definition 5.7. (Subclass or Implement)
D is a subclass of C (or D implements C) if and only if C is a subset of D or
D is a subclass of C (or D implements C) if and only if GetNames(C) is a subset
of GetNames(D) and for all K in C there is M in D such that GetName(M) =
GetName(K) and GetReturnType(M) is a subclass of GetReturnType(K).

Definition of subclass is a recursive definition. There are two variant of subclass.
The first variant describes the simple case, when the ancestor class is the subset
of the child class. This means that we inherit the child class from the ancestor
by adding new method to it. The second variant of subclass describes the more
complicated case, when we inherit the child class from the ancestor by overriding
some methods (of course we can add also new methods, too). This case we allow
only that the return type of the overridden method is a subclass of the return type
of the original method.

Note that the definition of subclass is a sentence in Simp language. Hence, we
can use the subclass predicate in Simp language sentences.



Sz. Márien, G. Kusper: Understanding Design Patterns as Constructive Proofs 175

6. The Abstract Factory Design Pattern

The Abstract Factory Design Pattern provides an interface for creating families
of related or dependent objects without specifying their concrete classes. [5]

As each design pattern AF consists of two parts, problem specification and
problem solution. Since AF is a class creational pattern we can formulize its prob-
lem specification part using the Simp language. We give this Simp sentence as a
lemma and we try to prove it. We will see that we need the idea described in the
problem solution part to be able to construct the proof.
Lemma 6.1. (Abstract Factory)
For each set of class APS there is an interface AF such that for each class CF which
implements AF we have that for each class AP in APS there is a method M in CF
such that its return type is a subclass of AP.

The same lemma using formal notation:
Lemma 6.2. (Abstract Factory)
∀APS, APS is a set of classes ∃AF, AF is an interface ∀CF, CF implements AF
∀AP, AP ∈ APS ∃M, M ∈ CF : GetReturnType(M) is a subclass of AP.

If we try to prove this lemma we face the following problem. Using the usual
automated theorem proving techniques we do the following steps. First we elimi-
nate the first connective in the goal, i.e., the ∀APS, APS is a set of classes part,
by fixing APS to an arbitrary set of class. Now we have in or knowledge base that
APS is a set of classes and or goal is the remaining formula, i.e., ∃AF, AF is an
interface ∀CF, CF implements AF ∀AP, AP ∈ APS ∃M, M ∈ CF : GetReturn-
Type(M) is a subclass of AP. Now we have no other choice, we have to eliminate
the first connective in the goal, which is an existentional quantifier. This is usually
a difficult step. To eliminate exists from goal we need either human creativity or a
powerful automated theorem proving software, which systematically creates more



176 6 th International Conference on Applied Informatics

and more complicated constant and investigates whether it is a solution or not.
This process may take an enormous time. But in our case we do not need this
process, because the second part of the design pattern, the problem solution, tells
us how to construct this interface.

The problem solution part of Abstract Factory design pattern suggests that the
AF (Abstract Factory) interface should contain for each Abstract Product (AP in
APS) a method, which creates that product, i.e., AF should have the property:
∀AP, AP ∈ APS ∃M, M ∈ AF : GetReturnType(M) = AP. We use this suggestion
in the proof.
Proof of Abstract Factory
To show that ∀APS, APS is a set of classes ∃AF, AF is an interface ∀CF, CF imple-
ments AF ∀AP, AP ∈ APS ∃M, M ∈ CF : GetReturnType(M) is a subclass of AP,
we assume that APS_1 is a set of classes and show that ∃AF, AF is an interface
∀CF, CF implements AF ∀AP, AP ∈ APS_1 ∃M, M ∈ CF : GetReturnType(M)
is a subclass of AP. To show this we have to find a suitable choice for AF. We
use the suggestion of the problem solution part of Abstract Factory. Let AF_1
be an interface such that ∀AR, AR ∈ APS_1 ∃N, N ∈ AF : GetReturnType(N)
= AR. We show that AF_1 is a suitable choice for AF. To show this we assume
that CF_1 implements AF_1 and show that ∀AP, AP ∈ APS_1 ∃M, M ∈ CF_1
: GetReturnType(M) is a subclass of AP. To show this we assume that AP_1 ∈
APS_1 and show that ∃M, M ∈ CF_1 : GetReturnType(M) is a subclass of AP_1.
To show this we have to find a suitable choice for M. We know that ∀AR, AR ∈
APS_1 ∃N, N ∈ CF_1 : GetReturnType(N) = AR. By substituting AP_1 in AR
we know that for some N_1 ∈ CF_1 we have GetReturnType(N_1) = AP_1.
We know that CF_1 implements AF_1. From this, by definition of implement,
we know that ∀K, K ∈ AF_1 ∃L, L ∈ CF_1 : GetName(L) = GetName(K) ∧
GetReturnType(L) is a subclass of GetReturnType(K). By substituting N_1 in K
we obtain that for some L_1 ∈ CF_1 we have GetReturnType(L_1) is a subclass
of GetReturnType(N_1). >From this and from GetReturnType(N_1) = AP_1,
we know that GetReturnType(L_1) is a subclass of AP. Hence, L_1 is a suitable
choice for M. Hence, ∀APS, APS is a set of classes ∃AF, AF is an interface ∀CF, CF
implements AF ∀AP, AP ∈ APS ∃M, M ∈ CF : GetReturnType(M) is a subclass
of AP.

Our goal was to show that using the suggestion of the problem solution part of
AF we can produce the proof of the formula, which describes the problem specifi-
cation part of AF. The proof uses the standard automated theorem proving tech-
niques, no big ideas or shortcuts. Therefore, it is a bit hard to read.

References

[1] Albin-Amiot, H.; Guéhéneuc, Y.: Meta-Modeling Design Patterns: Application to
Pattern Detection and Code Analysis, Workshop on Adaptive Object-Models and



Sz. Márien, G. Kusper: Understanding Design Patterns as Constructive Proofs 177

Metamodeling Technoques. ECOOP(European Conference on Oriented Program-
ming), 2001.

[2] Aline Lúcia Baroni: Design Patterns Formalization. Resource Riport 03/03/Info,
Computer Science Department of École Nationale Supérieure des Techniques Indus-
trielles et des Mines de Nantes, 2003.

[3] Buschmann, R.; Meunier, R.; Rohnert, H,; Sommerlad, P., Stal, M.: Pattern-Oriented
Software Architecture - A System of Patterns, Wiey and Sons, 1996.

[4] Coplien, J.O.: Code Patterns. The Smalltalk Report, SIGS Publications, 1996.
[5] Gamma,E; Helm, R.; Johnson, R.; Vlissides, J.: Design Patterns: Elements of

Reusable Object-Oriented Software, Addison-Wesley Professional Computing Series,
1995.

[6] H. Eden, Amnon; Gil, Joseph (Yossi); Hirshfeld, Yoram; Yehudai, Amiram: Towards
a Mathematical Foundation For Design Patterns.

[7] Dong, Jing: Design Component Constracts: Modeling and Analysis of Pattern-Based
Composition, Ph.D Thesis, Computer Science Department of Waterloo, 2003.

Postal addresses

Szabolcs Márien
Department of Computer Science,
University of Debrecen,
2, József Attila Street,
Nyékládháza, H3433
Hungary

Gábor Kusper
Department of Computer Science,
University of Debrecen,
15, Bethlen GáborStreet,
Eger,
Hungary


