
6 th International Conference on Applied Informatics
Eger, Hungary, January 27–31, 2004.

Algorithmic Improvements in Natural
Language Parsing within Dialogue Systems:

Priority Patterns and Wildcards

Gergely Kovásznai

Department of Computer Science, University of Debrecen, Hungary
e-mail: kovasz@inf.unideb.hu

Abstract

Nowadays, human-machine interaction is changing dramatically toward
spoken dialogue. One of the subtasks performed by a dialogue system (DS) is
the natural language (NL) parsing in order to extract meaning from spoken
user input. The most regular tool used for NL parsing is a context-free
(CF) grammar. Jay Earley’s parser is a well-known algorithm for parsing in
an arbitrary CF grammar. In this paper, an improved variant of Earley’s
parser is proposed in order to solve two essential problems that belong to
NL parsing and arise from dialogue management. One of them is the use
of partially-specified patterns, i.e., the use of wildcards in the right-hand-
sides of the rewriting rules. The second one is the use of priority patterns,
i.e., the assignment of priorities to rewriting rules. These problems mostly
are not handled in the state-of-the-art DSs. The proposed parser has been
implemented in a DS core application called the CAML Core, that is used
to implement DSs in several domains like conversational and multi-modal
interfaces for help desk applications, and for chat bots.

1. Introduction

In our days, many dialogue systems (DSs) are developed and used in several
domains, e.g., help desk applications on airplane/train ticket reservation, chat bots,
etc. Each DS includes a module that performs natural language (NL) parsing and
understanding, i.e., the extraction of semantic information (let us say meaning)
from a user input in a spoken language [2, 3, 4]. The most frequent technique for
NL parsing is a context-free (CF) grammar. A problem inherent in a CF parser
is the use of only fully-specified patterns, i.e., rewriting rules (rules) that have
fully-specified right-hand-sides. From a practical point of view, it is impossible to
prepare a CF grammar for each possible user input since it can include only a finite

129

130 6 th International Conference on Applied Informatics

set of rules. The use of partially-specified patterns, i.e., the support of wildcards
within the right-hand-sides can solve this problem. By the use of wildcards, unpre-
dictable information (e.g., names) can be extracted from a user input, furthermore
a validity check on a text can be performed out of the parser (i.e., by a dialogue
manager module). The majority of the state-of-the-art DSs employ NL parsers
which support only fully-specified patterns, like the Phoenix Semantic Parser and
the Dialogue Management Tool (see [5]).

Another facility which is quite important and usually not supported in NL
parsing is the use of priority patterns. The need of placing rules in a priority
order has arisen from dialogue management, where the analysis of a user input
is performed usually in hierarchical steps, from the step with the highest priority
toward the step with the lowest priority.

In Section 2, the basic concepts that are used in this paper are introduced. In
Section 3, the basic variant of Jay Earley’s parser [1] is proposed, which will be
improved in Section 4 in order to use wildcards and priority patterns. This parser
will be further improved in Section 5 for the sake of the soonest possible emission
of parse-trees.

2. Context-free Parsing

Basic concepts.

Let a CF grammar be a quintuple 〈VT ,VNT ,S,VW ,Φ〉, where S∈VNT and VW ⊂
VNT . VT is the set of terminal symbols denoted by a, b, c in this paper. The
non-terminal symbols, i.e., the elements of VNT , are denoted by A,B,C. We refer
strings that are elements of (VT ∪ VNT)

? as α, β, γ. The empty string is denoted
by λ. We call the elements of VW wildcards. Φ is an ordered set of rules. A rule
(A→ α) located before another rule (B → β) in Φ is said to have higher priority
than (B → β). During the parsing for w1 . . . wN (N ≥ 0, w1, . . . , wN ∈ VT), Φ
may be extended with some rule that has a wildcard in the left-hand-side. The
right-hand-side of such a rule depends on w1 . . . wN .

Since ordered sets are used in this paper, a notation is needed to be introduced.
An ordered set K can be represented in the form 〈s1, . . . , sk〉 (k ≥ 0), where s1
is its first element, s2 is its second element, etc. The number of elements of K is
written in the form K.size. The ith element of K (1 ≤ i ≤ K.size) is denoted by
K[i].

During parsing, so-called states are constructed. A state is written in the
form [i, j, (A → α • β), π], where 0 ≤ i, j ≤ N , • /∈ VT ∪VNT , and π is an or-
dered set of states. π contains as many states as the number of the non-terminal
symbols in α (see [1]). Each state represents a semi-tree, i.e. a possibly incom-
plete parse-tree. A completed form of an [i, j, (A→α • β), 〈s1, . . . , sm〉] is a state
[i, k, (A→αβ•), 〈s1, . . . , sn〉] (k ≥ j, n ≥ m).

G. Kovásznai: Algorithmic Improvements in Natural Language Parsing. . . 131

The sequential nature of the parse-trees.

Since natural languages are inherently based on ambiguous grammars, it usually
happens that more than one trees can be constructed for one input string. This is
especially true when wildcards are used, since it may happen several possible texts
to be assigned to a given wildcard. If priorities are assigned to the rules, the parser
must emit the trees in the order of their priorities that can be computed on the
basis of the priorities of the rules. This is why we need a parsing algorithm which
can deal with a sequence of outputs. In contrast with Earley’s original parser, the
proposed parser constructs one single ordered set (not sets) of states.

3. The Basic Parser

The basic parser is actually Earley’s original algorithm in a form which will be
suitable for our further improvements. It is used to parse in a CF grammar that
does not include wildcards. It emits the trees one after the other, this is why it
possess the ability to emit the trees in a pre-defined order, e.g., in the order of their
priorities (see Section 4 and 5).

As can be seen in the algorithm introduced in Figure 1, the constructed ordered
set of states is called Parse. In the variable index, the position of the state
currently focused (within Parse) is stored. Parse and index are initialized in the
phase initialization (item (I)). In the initialization, only one state gets to be stored
in Parse, namely [0, 0, (S′→•S), 〈〉] where S′ /∈ VT ∪ VNT .

(I) initialization

(A) Parse := 〈〉, Parse.push([0, 0, (S′ →•S), 〈〉]);
(B) index := 1.

(II) If index > Parse.size then halt with rejection.
(III) state := Parse[index].
(IV) If state = [0, N, (S′ →S•), π] then

if CHECK_PARSETREE(state) then halt with acceptance.
(V) If state = [i, j, (A→α1 • aα2), π] then

scanning

if j < N and a = wj+1 then
(A) Parse.modify(index, [i, j + 1, (A→α1a • α2), π]);
(B) go to (III).

(VI) If state = [i, k, (A→α1 • Bα2), 〈s1, . . . , sm〉] then
(A) prediction

for all (B→β) ∈ Φ:
Parse.push([k, k, (B→•β), 〈〉]);

(B) completion1

for all s := [k, j, (B→β•), π] ∈ Parse where Parse.index(s) < Parse.index(state):
Parse.push([i, j, (A→α1B • α2), 〈s1, . . . , sm, s〉]).

(VII) If state = [k, j, (B→β•), π] then

completion2

for all s := [i, k, (A→α1•Bα2), 〈s1, . . . , sm〉] ∈ Parse where Parse.index(s) < Parse.index(state):
Parse.push([i, j, (A→α1B • α2), 〈s1, . . . , sm, state〉]).

(VIII) index := index + 1.
(IX) Go to (II).

Figure 1: The basic parser.

Thee new operations must be defined for an ordered set K. K.push(s) de-
notes the operation of appending s to K. K.modify(i, s) denotes the operation of

132 6 th International Conference on Applied Informatics

modifying K[i] to s. K.index(s) returns the position s ∈ K in K.
At the items (II) and (IV), the halt conditions are formulated. If the parser is

focusing a so-called final state then it can halt with the acceptance of w1 . . . wN

(at (IV)). If the parser has not constructed any final state and there is no state left
to be focused then it halts with rejection (at (II)). The parser can be customized
by specifying the condition CHECK_PARSETREE which is an additional check
if the constructed tree represented by Parse[index] is valid and can be emitted.

The phases corresponding to the three basic operations of Earley’s parser,
namely the scanning, the completion, and the prediction, are indicated in Fig-
ure 1. Since arbitrary CF grammars can be used (i.e., they may contain even a
rule (A→λ)), the completion cannot be applied in a straightforward way (as men-
tioned in [1]), this is why the completion is performed in two symmetrical phases,
namely in the completion1 and the completion2.

Actually, Parse represents a compound data structure, namely a composition
of a FIFO (first-in, first-out) data structure and a LIFO (last-in, first-out) one.
FIFO consists of the states that have already been focused, and LIFO contains the
ones that have not been yet. The variable index separates the two data structures
since index points to the first element of LIFO and the first element of FIFO is
located at the position index− 1.

4. Wildcards and Priority in the Improved Parser

The basic parser is going to be improved in this section in order to handle
wildcards and the priorities of rules. In the improved parser, the following elements
should be incorporated:
• a modified prediction in order to specify new states in the case of B ∈ VW ;
• distinct types of wildcards, e.g., greedy and at-least-one-character-long ones;
• former emission of a tree with higher priority than other ones.

Handling wildcards.

In terms of the predicition, if wi is the next symbol which should be parsed
then the dotted rules (B→•), (B→•wi), (B→•wiwi+1), . . . , (B→•wiwi+1 . . . wN)
should be used to generate new states. Since the right-hand-sides of these rules
are constructed based on the input string, all of them will be used in the scanning
until the completion is performed on them. Accordingly, their completed form can
be added (to Parse) immediately in the prediction (as can be seen at (III)(C)(2)(a)
in Figure 2), in order to save time.

The improved parser can be customized by specifying the condition CHECK_-
WILDCARD, which is a check if a (B→β) where B ∈ VW is valid. This is how we
can use at-least-one-character-long wildcards (CHECK_WILDCARD(β): β 6= λ),
for example. Another support for customizing wildcards is the customization of
the priority of (B→β) rules. This is how we can use greedy wildcards ((B→β1)
has higher priority than (B→β2) if |β1| > |β2|), for example.

G. Kovásznai: Algorithmic Improvements in Natural Language Parsing. . . 133

(I) initialization

(A) Parse := 〈[ENDSTATE]〉, Parse.insert(1, [0, 0, (S′ →•S), 〈〉]);
(B) DRoot := ∅, Root(S′, 0) := [ENDSTATE];
(C) index := 1.

(II)(A) state := Parse[index];
(B) if state = [ENDSTATE] then halt with rejection.

(IV) If state is INACTIVE then
(A) if state = [0, N, (S′ →S•), π] then

if CHECK_PARSETREE(state) then halt with acceptance;
(B) if state = [i, j, (A→α1 • aα2), π] then

(1) scanning

if j < N and a = wj+1 then
(a) Parse.modify(index, [i, j + 1, (A→α1a • α2), π]);
(b) go to (II);

(2) set state USED;
(C) if state = [i, k, (A→α1 • Bα2), 〈s1, . . . , sm〉] then

(1) set state USED;
(2) if Root(B, k) is undefined then

prediction

(a) ◦ if B /∈ VW then
for all (B→β) ∈ Φ in reverse order of their priority:

Parse.insert(index, [k, k, (B→•β), 〈〉]);
◦ else

for all j where k ≤ j ≤ N in reverse order of the priority of (B→wk+1 . . . wj) rules:
if CHECK_WILDCARD(wk+1 . . . wj) then

Parse.insert(index, [k, j, (B→wk+1 . . . wj•), 〈〉]);
(b) Root(B, k) := state;
(c) if Parse[index] 6= state then go to (V);

(3) completion1

for all USED s := [k, j, (B→β•), π] ∈ Parse:
a s′ := [i, j, (A→α1B • α2), 〈s1, . . . , sm, s〉];
b insert(state, s′);

(D) if state = [k, j, (B→β•), π] then
(1) set state USED;

(2) completion2

for all USED s := [i, k, (A→α1 • Bα2), 〈s1, . . . , sm〉] ∈ Parse:
a s′ := [i, j, (A→α1B • α2), 〈s1, . . . , sm, state〉];
b insert(s, s′).

(V)(a) i := min{Parse.index(t)|t ∈ Parse is INACTIVE};
(b) if i > index then i := index + 1;
(c) index := i.

(VI) Go to (II).

Figure 2: The improved parser.

Concepts.

Let us introduce the function Root which assigns a state to a non-terminal
symbol A and a position i, 0 ≤ i ≤ N . A state s = Root(A, i) if some [i, i, (A→
•α), 〈〉] was added when s was being focused (in the prediction). The state s is said
to be the root of each [i, j, (A→α1 • α2), π]. Let s

root−→ s′ denote that s is the root
of a state s′, and let s root−→k s

′ (k ≥ 1) denote that there is a sequence of s1, . . . , sk
where s1 = s, sk = s′, and si

root−→ si+1 for all i (1 ≤ i ≤ k − 1).

It can be seen that each state in Parse has a root except [0, 0, (S′→•S), 〈〉], so
that a special state denoted by [ENDSTATE] must be introduced as Root(S′, 0).
The state [ENDSTATE] must differ from any possible state that can be generated.
Like [0, 0, (S′→•S), 〈〉], [ENDSTATE] is added in the initialization (at (I)). Futher-
more, [ENDSTATE] is used in the new halt condition for rejection (at (II)(B)).

134 6 th International Conference on Applied Informatics

Handling priority.

Since a tree having higher priority than other ones should be emitted before
them, the ordering of the states in Parse, as introduced in the basic algorithm,
is not suitable any more, i.e., Parse cannot be splitted to FIFO and LIFO data
structures hereafter. The set of states that have already been focused (used states)
and the set of states that have not been focused yet (inactive states) will be general
ordered sets. Since the states should be ordered according to their priorities, the
used and the inactive states can be located mixed in Parse (i.e., index does not
separate them). Accordingly, the activation-flag which can get the values either
INACTIVE or USED is being introduced for a state, denoting if the given state is
an inactive state or a used one. Every state is INACTIVE by default.

Since a new state can be added to Parse not only at the end, the operation
K.insert(i, s) will be used for this insertion. For an ordered set K, K.insert(i, s)
represents the insertion of s into K at the position i (1 ≤ i ≤ K.size+1). Each
element of K located not before the position i is shifted to one higher position,
before s is placed to the position i.

New states can be inserted (into Parse) in two different ways: either in the
prediction or in the completion. As can be seen at (III)(C)(2)(a), all the new states
are inserted at the position index in the prediction, i.e., just before the currently
focused state. They are inserted one after the other in reverse order of their prior-
ities, in order to get them ordered (in Parse) by their priorities. Actually, all the
states are not needed to be entirely ordered, only the states that have the same
root must be ordered as compared to each other.

In terms of the completion, a special function is needed to be introduced in
order to ensure the aforementioned root-based ordering. This function is denoted
by insert(state, s) (shown in Figure 3) where state ∈ Parse, and represents the
root-based insertion (i.e., an insertion method that preserves root-based ordering)
of s into Parse after the position of state.

insert(state, [i1, i2, (A→α1 • α2), 〈s1, . . . , sm〉]):

(1)(a) p := Parse.index(state);
(b) ins_pos := 0.

(2)(a) p := p + 1;
(b) let [j1, j2, (B→β1 • β2), 〈t1, . . . , tn〉] denote Parse[p].

(3)(a) If Parse[p] = Root(A, i1) then go to (7);
(b) if Parse.index(Root(A, i1)) = Parse.index(Root(B, j1)) then

◦ if α1α2 6= β1β2 go to (7);
◦ else go to (4);

(c) if Parse.index(Root(A, i1)) > Parse.index(Root(B, j1)) then go to (5);
(d) if Parse.index(Root(A, i1)) < Parse.index(Root(B, j1)) then go to (6).

(4)(a) r := 1;
(b) if r > n then go to (7);
(c) if Parse.index(sr) > Parse.index(tr) then go to (6);
(d) if Parse.index(sr) < Parse.index(tr) then go to (7);
(e) r := r + 1;
(f) go to (4)(b).

(5)(a) If ins_pos = 0 then ins_pos := p;
(b) go to (2).

(6)(a) ins_pos := 0;
(b) go to (2).

(7)(a) If ins_pos = 0 then ins_pos := p;
(b) Parse.insert(ins_pos, [i1, i2, (A→α1 • α2), 〈s1, . . . , sm〉]).

Figure 3: The insertion function.

G. Kovásznai: Algorithmic Improvements in Natural Language Parsing. . . 135

Root-based insertion.

As can be seen in Figure 3, the insertion function tries to find the proper
position for inserting the state s (let [i1, i2, (A→ α1 • α2), 〈s1, . . . , sm〉] denote s)
by comparing s to all the states after state one after the other (by the use of
the position variable p). By the use of the variable ins_pos, the latest possible
position for insertion can be stored (if ins_pos = 0 then there has been no position
to remember).

Let s′ denote Parse[p]. The search immediately ends (and the insertion gets
performed at (7)) when s′ is the root of s (at (3)(a)). Something similar is done if
s′ has the same root as s (at (3)(b)): if s and s′ have been generated from the same
rule (A→ α1α2) then the priorities of the semi-trees represented by s and s′ are
compared (at (4)). If this comparison shows that s has higher priority than s′, the
insertion gets performed immediately. In all the other cases, the search is being
continued.

One of them is the case when the root of s is located after the root of s′ (at
(3)(c)). It means that s′ root−→kRoot(A, i1) where k > 1, i.e., [j1, j1, (B→•β1β2), 〈〉]
was inserted later than [i1, i1, (A→•α1α2), 〈〉].

The other case (at (3)(d)), when s
root−→kRoot(B, j1) where k > 1, cannot happen

in the improved parser. Since it may happen in the expedited parser, look for
further explanation in Section 5.

5. Immediate Emission in the Expedited Parser

It can be easily seen that the improved parser proposed in Section 4 is quite
ineffective and has been created only for a purpose of further improvements made
in this section, which will result a parser called the expedited parser (shown in
Figure 4 where a phase name followed by an asterisk refers to a phase with the
same name in the improved parser in Figure 2). The improved parser emits the
trees only at the end of the parse. This functionality could be easily realised by
simply collecting the trees generated by the basic parser and emitting them in
priority order after the basic parser has ended. Contrarily, the expedited parser
emits a tree as soon as possible, i.e., if no other tree having higher priority can be
constructed thereafter.

Let us introduce the expression “immediate emission of a state”, which means
that a state generated from a state s and from the root of s (in the completion2)
can be focused immediately (see (IV)(E)(2)). In order to observe if a state can be
emitted immediately, the new value ‚is introduced for the activation-flag. For a
state s, being active (i.e., the state has the activation-flag set to ‚) means that its
completed form s′ /∈Parsemay be inserted thereafter (the activation-flag can be set
to ‚at (IV)(D)(1)). Furthermore, we are introducing a new flag called the collection-
flag. If this flag is set for a state then the state is said to be collected (a state is
non-collected by default and its collection flag can be set at (IV)(B), (IV)(D)(4)(b),
and (IV)(E)(2)(b)). For a state s, being collected means that an s′ /∈ Parse may

136 6 th International Conference on Applied Informatics

be inserted thereafter where the roots of s and s′ are the same and s′ has higher
priority then s. It can be seen that a non-collected state generated from a state s
and from the root of s can be emitted immediately, as done at (IV)(E)(2)(c) where
such a state is inserted before all the inactive states (i.e., it will be focused next
time).

(I)(A) initialization ? ;

(B) DRRoot := ∅.
(II)(A) state := Parse[index];

(B) if state = [ENDSTATE] then halt with rejection.
(III) If state is ACTIVE then

(A) let [i, k, (A→α1 • Bα2), π] denote state;
(B) ◦ if RRoot(B, k) in undefined then set state USED;

◦ else for all s := [k, j, (C→γ1 • γ2), φ] ∈ Parse:
if RRoot(C, k) is defined and RRoot(C, k) = state then

(1) set s USED and non-COLLECTED;
(2) set state USED.

(IV) If state is INACTIVE then
(A) if state = [0, N, (S′ →S•), π] then

if CHECK_PARSETREE(state) then halt with acceptance;
(B) if state = [k, k, (A→•α), 〈〉] then

if there is an ACTIVE [k, k, (A→•γ), 〈〉] then set state COLLECTED;
(C) if state = [i, j, (A→α1 • aα2), π] then

(1) scanning ? ;

(2) set state USED;
(D) if state = [i, k, (A→α1 • Bα2), 〈s1, . . . , sm〉] then

(1) set state ACTIVE;
(2) if Root(B, k) is undefined then

prediction ? ;

(3) ◦ if there is an ACTIVE [k, k, (B→•β), 〈〉] ∈ Parse then
(a) – if RRoot(B, k) is defined then r := RRoot(B, k);

– else r := Root(B, k);
(b) for all ACTIVE s := [k, k, (C → •γ), 〈〉] ∈ Parse where Parse.index(Root(C, k)) ≤

Parse.index(r):
RRoot(C, k) := r;

◦ else set state USED;

(4) completion1

for all USED s := [k, j, (B→β•), π] ∈ Parse:
(a) s′ := [i, j, (A→α1B • α2), 〈s1, . . . , sm, s〉];
(b) if any of state and s is COLLECTED then set s′ COLLECTED;
(c) insert(state, s′);

(E) if state = [k, j, (B→β•), π] then
(1) set state USED;

(2) completion2

for all ACTIVE s := [i, k, (A → α1 • Bα2), 〈s1, . . . , sm〉] ∈ Parse in ascendent order of
Parse.index(s):

(a) s′ := [i, j, (A→α1B • α2), 〈s1, . . . , sm, state〉];
(b) if any of state and s is COLLECTED then set s’ COLLECTED;
(c) ◦ if s = Root(B, k) and s′ is non-COLLECTED then

(i) i := min{Parse.index(t)|t ∈ Parse is INACTIVE};
(ii) if i > index then i := index + 1;
(iii) Parse.insert(i, s′);
◦ else insert(s, s′).

(V)(a) i := min{Parse.index(t)|t ∈ Parse is INACTIVE};
(b) if i > index then i := index + 1;
(c) index := i.

(VI) Go to (II).

Figure 4: The expedited parser.

Since a state [i, k, (A → α1B • α2), φ] can be inserted before the location of
[i, j, (A→α1 •Bα2), π] (at (IV)(E)(2)(c)), the case mentioned at the end of Section
4 and handled at (3)(d) in Figure 3 can happen in the expedited parser, in contrast
with the improved parser.

G. Kovásznai: Algorithmic Improvements in Natural Language Parsing. . . 137

PARSE:
INACTIVE [0, 0, (S′ →•S), 〈〉]

[ENDSTATE]
ROOT:

S′, 0 → [ENDSTATE]

⇓
PARSE:

USED 1: [1, 3, (W →aa•), 〈〉]
USED 2: [0, 3, (A→aW•), 〈1〉]
USED [0, 3, (S→A • a), 〈2〉]
USED 3: [1, 2, (W →a•), 〈〉]
USED 4: [0, 2, (A→aW•), 〈3〉]
USED 5: [0, 3, (S→Aa•), 〈4〉]
USED [0, 3, (S′ →S•), 〈5〉]
ACTIVE [0, 1, (A→a • W), 〈〉]
INACTIVE [0, 0, (A→•B), 〈〉]
INACTIVE [0, 0, (A→•a), 〈〉]
INACTIVE [0, 0, (A→•S), 〈〉]
ACTIVE [0, 0, (S→•Aa), 〈〉]
ACTIVE [0, 0, (S′ →•S), 〈〉] ⇒

[ENDSTATE]
ROOT:

S′, 0 → [ENDSTATE]
S, 0 → [0, 0, (S′ →•S), 〈〉]
A, 0 → [0, 0, (S→•Aa), 〈〉]
W, 1 → [0, 1, (A→a • W), 〈〉]

G = 〈{a}, {S,A,B,W}, S, {W},Φ〉
Φ = 〈(S→Aa), (A→aW)(A→B), (A→a),

(A→S), (B→S)〉

input string: aaa

Wildcards are greedy and
and at-least-one-character-long.

1st snapshot: initial state of parsing.
2nd snapshot: first tree has just been emitted.
3rd snapshot: just before the end of parsing.

Final states are in boldface style.
Currently focused states are in italic style.

States are refered by the use of numeric labels.

PARSE:
USED 1: [1, 3, (W →aa•), 〈〉]
USED 2: [0, 3, (A→aW•), 〈1〉]
USED [0, 3, (S→A • a), 〈2〉]
USED 3: [1, 2, (W →a•), 〈〉]
USED 4: [0, 2, (A→aW•), 〈3〉]
USED 5: [0, 3, (S→Aa•), 〈4〉]
USED [0, 3, (S′ →S•), 〈5〉]
USED [0, 1, (A→a • W), 〈〉]
ACTIVE [0, 0, (B→•S), 〈〉]
USED 6: [0, 3, (B→S•), 〈5〉]
USED 7: [0, 3, (A→B•), 〈6〉]
USED [0, 3, (S→A • a), 〈7〉]
USED COLLECTED 15: [0, 3, (B→S•), 〈14〉]
USED COLLECTED 11: [0, 2, (B→S•), 〈10〉]
USED COLLECTED 19: [0, 3, (B→S•), 〈18〉]
ACTIVE [0, 0, (A→•B), 〈〉]
USED COLLECTED 16: [0, 3, (A→B•), 〈15〉]
USED COLLECTED 12: [0, 2, (A→B•), 〈11〉]
USED COLLECTED 20: [0, 3, (A→B•), 〈19〉]
USED COLLECTED 8: [0, 1, (A→a•), 〈〉]
ACTIVE COLLECTED [0, 0, (A→•S), 〈〉]
USED COLLECTED 9: [0, 3, (A→S•), 〈5〉]
USED COLLECTED 17: [0, 3, (A→S•), 〈14〉]
USED COLLECTED 13: [0, 2, (A→S•), 〈10〉]
USED COLLECTED 21: [0, 3, (A→S•), 〈18〉]
ACTIVE [0, 0, (S→•Aa), 〈〉]
USED COLLECTED [0, 3, (S→A • a), 〈16〉]
USED COLLECTED 14: [0, 3, (S→Aa•), 〈12〉]
USED COLLECTED [0, 3, (S→A • a), 〈20〉]
USED COLLECTED 10: [0, 2, (S→Aa•), 〈8〉]
USED COLLECTED [0, 3, (S→A • a), 〈9〉]
USED COLLECTED [0, 3, (S→A • a), 〈17〉]
USED COLLECTED 18: [0, 3, (S→Aa•), 〈13〉]
USED COLLECTED [0, 3, (S→A • a), 〈21〉]
ACTIVE [0, 0, (S′ →•S), 〈〉]
INACTIVE COLLECTED [0, 3, (S′ →S•), 〈14〉]
INACTIVE COLLECTED [0, 2, (S′ →S•), 〈10〉]
INACTIVE COLLECTED [0, 3, (S′ →S•), 〈18〉]

[ENDSTATE]
ROOT:

S′, 0 → [ENDSTATE]
S, 0 → [0, 0, (S′ →•S), 〈〉]
A, 0 → [0, 0, (S→•Aa), 〈〉]
W, 1 → [0, 1, (A→a • W), 〈〉]
B, 0 → [0, 0, (A→•B), 〈〉]

RROOT:
B, 0→[0, 0, (S′ →•S), 〈〉]
A, 0→[0, 0, (S′ →•S), 〈〉]
S, 0→[0, 0, (S′ →•S), 〈〉]

Figure 5: An example parsing.

Handling recursion.

The straightforward way of the generation of states gets absolutely impossi-
ble because of the existence of [i, i, (A → α1 • Aα2), π] states, which we call re-
cursive states. The situation gets even more complicated if a kind of indirect
recursion occurs, i.e., there is a subset {[i, i, (A1 → α1 • A2β1), π1], [i, i, (A2 →
α2 • A3β2), π2], . . . , [i, i, (Ak→αk • A1βk), πk]} of Parse, where k ≥ 1. Such a set
we will call a recursive chain.

Let us introduce the term of a recursive set. A recursive chain itself is a recursive
set. Futhermore, R1 ∪ R2 is a recursive set where R1 and R2 are recursive sets, if
there is an [i, i, (A→α1 •α2), π1] ∈ R1 and there is an [i, i, (A→β1 • β2), π2] ∈ R2.
From a pratical point of view, all the elements of a recursive set depend on each
other in the following sense: the generation of a completed form of an element can
cause the generation of a completed form of any element.

A maximal recursive set is a recursive set R1 for that no recursive set R2 can
be found where R1 ∪ R2 is a recursive set and |R1 ∪ R2| > |R1|. In order to

138 6 th International Conference on Applied Informatics

represent maximal recursive sets, the function RRoot is introduced. Similarly to
Root, it can assign a state to a non-terminal symbol A and an index i (0≤ i ≤
N), and it is initialized at (I). RRoot(A, i) can be specified in the following way:
RRoot(A, i) = r if there is an {s1, . . . , sk} recursive set where Parse.index(r) =
max{Parse.index(ri)|ri is the root of si, 1 ≤ i ≤ k}. The assignment pairs for
RRoot are specified at (IV)(D)(3). RRoot is used at (III) in order to check if an
active state can be transformed to a used one, i.e., no completed form of the given
state may be generated thereafter.

In Figure 5, the parse of a grammar that includes a wildcard and causes recur-
sivity is illustrated.

6. Realization and Future Plans

The proposed parser has been implemented and incorporated in the CAML
Core [5, 6]. Our parser could be further improved by employing lookahead in the
prediction [7], and by avoiding infinite loops in parsing.

References
[1] J. Earley, “An Efficient Context-Free Parsing Algorithm”, Communications of the

ACM, 1970, Vol. 13, Issue 2.
[2] R. Suereth, “Developing Natural Language Interfaces”. N.Y., McGraw-Hill, 1997.
[3] N. Ole Bernsen, H. Dybkjær, and L. Dybkjær, “Designing Interactive Speech

Systems”. London, Springer-Verlag, 1998.
[4] X. Huang, A. Acero, and H.-W. Hon, “Spoken Language Processing”. Upper Sad-

dle River, N.J., Prentice Hall PTR, 2001.
[5] G. Kovásznai, C. Kotropoulos, and I. Pitas, “CAML – A Universal Configuration

Language for Dialogue Systems”, Lecture Notes in Computer Science. Springer,
2003, Vol. 2736, p. 896 - 906.

[6] Web page of the CAML and the CAML Core: http://caml.no-ip.com .
[7] M. Bouckaert, A. Pirotte, M. Snelling, “Efficient parsing algorithms for general

context-free parsers”, Information Sciences. 1975, Vol. 8, p. 1-26.

