
6 th International Conference on Applied Informatics
Eger, Hungary, January 27–31, 2004.

Component collaboration in Web
environment

Richárd Jónás

Department of Information Technology, Institute of Informatics,
University of Debrecen

H-4010 Debrecen, P.O.Box 12, Hungary
e-mail: richard.jonas@tsoft.hu

Abstract

The ever increasing importance of Web applications demands an effective
way to develop and maintain such applications. There are a lot of frame-
works that support the creation of Web applications but they require the
knowledge of the famous “yet another scripting language” in several cases.
These languages are not roboust enough so a general purpose programming
language is needed—such as Java—which is capable of describing general
activities. With that language, because of its generality, we have to manufac-
ture a great deal of code to make such tools accessible which are embedded
in the script languages mentioned before.

Making Web components in Java 40-80% of the codelines of a class will
be the same for many cases which results in difficult-to-maintain applica-
tions. These codes with common structure cannot be put into a superclass
or a utility class because they crosscut several classes. Code generation is a
partial solution because it results in the desired code but it is also hard to
modify. In this paper, I give aspect-oriented coding strategies to solve the
problem of some recurring patterns (e.g., getting the value of request para-
meters, database operations, etc.). I use the AspectJ programming language
to implement the described solutions to exploit the byte-code compatibility
with the standard Java byte-code.

Categories and Subject Descriptors: D.1.5 [Programming Techniques]:
Object-Oriented Programming; D.2.13 [Software Engineering]: Reusable soft-
ware D.3.3. [Programming Languages]: Constraints;

1. Introduction

As application development is a major part of information technology an effi-
cient software development philosophy is needed. Object-oriented programming is

121



122 6 th International Conference on Applied Informatics

a suitable paradigm to make large systems but it lacks functionality-based tech-
nologies (structure of object oriented software is based on the responsibility of
components but not on the role of them). Although applications are for function-
ality.

Component-based software development ([1]) is an efficient way to make soft-
ware from reusable pieces — either source or binary — thus it gives us a devel-
opment strategy which deals with the cost, flexibility, usability, development and
documentation issues.

In this paper I will analyse the components from the aspect of their function-
ality and their usability concerns. At first some functionaly-based problems of the
object-orientation will be introduced then this paper gives a possible solution of
component collaboration of frequently changing component-based systems.

2. Components in a changing world

To make software from reusable parts is a very cost-efficient way to build large
systems. It gives the possibility to build software from products of independent
teams, besides, the teams can develop software modules simultaneously. One can
make components to reuse them in other applications, others emphasize the usabil-
ity over reusability. We can make source components, or buy third-party compo-
nents in the component market. Some way or another it is worth using them for
several reasons.

Object-oriented programming supports the representation of real-world things
(called objects) but the OOP tries to capture the responsibility of real-world things
rather than their roles in functionalities of the system. In the real world, objects are
changed because of the change of requirements against them (and functionalities
raise requirements).

2.1. Separating functionalities

In many cases it is more comfortable to collect the functions that implement
the functionalities of the system, in this way we can split the system into two parts
— a static and a dynamic part.

The static part resists most functional and collaborational changes of a system
because it represents the real-world thing itself. Hence the dynamic part can be
frequently changed in a process, which can be described by the concepts of extreme
programming ([2]). Besides, the dynamic part can describe the usability of the
components e.g., whether they take part in a functionality or not. It is important
because we have to install the component into a subsystem or module, so the
appropriate interface is needed to put the component into the right place.

There are component frameworks which try to capture the communication be-
tween the components, but it is impossible to describe all types of the commu-
nication. You can invent such a framework but its usability will be surely weak,



R. Jónás: Component collaboration in Web environment 123

because of its generality. In that case it is more useful to give hints, patterns how
the communication can be described.

How can we detach and put together the functionalities featuring the static
and the dynamic part of the components? To split the components into the two
mentioned parts, a careful and deep software analysis is needed to find out which
things belong to the invariant which are the ones the object has to keep, and what
belong to the functionalities that can frequently be changed.

Some questions have arisen: how can the parts be described and how can those
parts be assembled. The static part can be written in Java, the dynamic part can
be written as separated aspects.

2.2. The world of aspects

Aspects are concerns or functionalities of a system. Aspect-oriented program-
ming ([3]) tries to solve the problem of cross-cutting ([4],[5]). Let us suppose
that we have a system with several functionalities—which can be captured by use
cases—and those functionalities are the result of the collaboration of many objects.
So there will be one or two methods in several objects that call the methods of
other objects. To modify such a functionality, we have to modify the source of
several objects and we have to deploy all those objects of course. We say those
functionalities cross-cut the objects. It is a very important concept of software
development, because in general the reason we have to modify objects is that ei-
ther the requirement or the functionaltity of the system are changed. Why is it so
important? Because we have to schedule the work of many teams developing the
same software, and one team manages only a few functionalities of the system, so
we have to synchronize their work.

Aspect-oriented programming is a language-neutral paradigm but one of the
best languages—with which it can work—is Java. There is a well-known program-
ming language called AspectJ ([6]) which is based on Java and realizes the concepts
of aspect-oriented programming.

3. Applications

As mentioned before, the static part of the system can be described by object-
oriented tools and the dynamic part by aspect-oriented tools. In order to demon-
strate the usage of aspect-oriented programming—in this way—some applications
are shown.

3.1. Bean-JSP communication

The first is a very useful one: it solves the problem of getting the value of request
parameters to use them by a bean. Let suppose that we have written a bean called
Bean which wants to know the value of the request parameter invoiceId. To solve
the problem let us try to reduce it. Let us define an attribute parameterInvoiceId



124 6 th International Conference on Applied Informatics

whose value will be the value of the request parameter mentioned before. Getting
its value is the second problem to solve. So we have a class with the following
source:

public class Bean {
private String parameterInvoiceId;

public void execute(){
...
ResultSet r = statement.executeQuery("select * from" +

"invoice where id = ’" + parameterInvoiceId + "’");
...

}
}

To denote that a class wants to know the value of request parameters, an
interface has to be created through which one can get or set the request object.

interface RequestGetter {
public ServletRequest getRequest();
public void setRequest(ServletRequest request);

}

In order to solve the problem of getting the request parameter values, let us
define an aspect called ParameterGetter. At first (denoting by (1) in the comment)
the aspect declares that the class Bean implements the RequestGetter interface.
Secondly, starting from line denoted by (2), objects implementing the request-
getter interface define an attribute called _rq type of ServletRequest. Then those
objects define the getter and setter method of that attribute. One can implement
interfaces automatically in this way. It is quite efficient because one can easily give
the property of getting parameters to a bean with the modification of line denoted
by (1).

aspect ParameterGetter {
declare parents: Bean implements RequestGetter; // (1)

private ServletRequest RequestGetter._rq = null; // (2)

public ServletRequest RequestGetter.getRequest(){
return _rq;

}

public void Request.setRequest(ServletRequest r){
_rq = r;

}



R. Jónás: Component collaboration in Web environment 125

after(Bean b, HttpServletRequest request): // (3)
execution(public Bean.new(..)) &&
this(b) &&
cflow(

execution(public void *.HttpJspBase._jspService(
HttpServletRequest, HttpServletResponse)

) &&
args(request)

){
b.setRequest(request);

}

String around(RequestGetter rg): // (4)
get(String RequestGetter+.parameter*) &&
this(rg) {
String attributeName =

thisJoinPointStaticPart.getSignature().getName();
String parameterName = attributeName.substring(9);
return rg.getRequest().getParameter(parameterName);

}
}

With line (3) an advice is started which means the following: after creation of
a Bean under the control flow of the execution of the _jspService method of the
HttpJspBase class let us set the request object to the bean. The topical object is
denoted by b and the first parameter can be accessed by the indentifier request.
According to the JSP specification ([7]) the main functionality of any JSP page is
described in the _jspService method of the HttpJspBase class, so by the cflow
pointcut one can check that something is under the control of a JSP page. One can
define a context-dependent behaviour of a component with the pattern introcuded.

The main functionality of the aspect is defined in (4). Instead of getting the
actual value of the attributes starting with the prefix parameter, the value of the
request parameter whose name is the name of the attribute without the prefix will
be provided.

3.2. Bean-database communication

It is conventional that a bean gets the value of its attributes from a database,
and can synchronize those values with a database. To write the methods deal-
ing with addition, modification and deletion is quite tiresome work—because they
contain very similar codes—so one can solve the problem with copy-paste or code
generation. It solves the problem of creating those methods but the generated
codes are hard to maintain, especially by several developers.

Instead of generating those methods, let us try to write them in AspectJ. The
main idea is the following: instead of writing the data manipulation methods one



126 6 th International Conference on Applied Informatics

by one, let us describe them formally and implement those methods generally. To
achive this let us define the following methods of the class Invoice:

• add_invoice(String _invoiceId, Timestamp createDate)

• mod_invoice(String _invoiceId, Timestamp createDate)

• del_invoice(String _invoiceId)

The prefixes add, mod and del stand for insertion, modification and deletion,
respectively. It is clear that the data manipulation SQL statements can be derived
from the signature of methods, for example the insertion can be written as follows:

add_invoice(String _invoiceId, Timestamp create_date)
insert into invoice (invoice_id, create_date) values (?, ?)

In the case of modification a condition is needed that selects the row to be
updated. To make such a condition we have to know which values belong to the
primary key. Due to the lack of concept of metadata in Java1, the parameters, the
name of which starts with the underline, will be the parts of the primary key. This
can be viewed as a “poor man’s metadata” feature but this example also emphasizes
the importance of the metadata feature.

3.3. Binary components

How can third-party components be deployed into a system? Let us suppose
that a JDBC driver was installed into the system and we would like to measure
its performance and try to detect its bottleneck. In that case we need the API
of the driver and we have to select the suspicious points as join-points. With
the corresponding pointcuts the execution times can be detected. It can be done
with AspectJ because AspectJ can weave aspects into binary components (Java
Archives). But it can be considered as an opportunity rather than a pattern because
it requires a little “hacking”, so the process of making such an aspect can be very
long.

4. Conclusion

Component-based software development is a progressive part of information
technology but it lacks several solutions. At first it is not as powerful as in me-
chanical engineering where the industry tries to follow some standards in order to
fabricates components that can be assembled. There are many concurrent software
platforms which try to find the best solutions in order to sell them. I do not want
to judge which systems are good or bad because it depends on several things. I
would rather give some programming hints that help to solve the communication
problem between components.

1During the research only the Java 1.4.2 was available in stable release.



R. Jónás: Component collaboration in Web environment 127

During developing a web-application it is worth creating components which
can discover their context, can adapt to other components (throw an exception
when some of the run conditions are not satisfied), can be configurable, etc. Those
properties make the component useable between contexts, so we have to write them
only once.

I have been developing a web-application for the MythoLogic project, the prod-
uct of which is a portal system with which one can build portals in a flexible and
dynamic way. The patterns mentioned before were built into that system and it
seems that it is worth using them. The source of the system is quite large, namely
4 megabytes. It contains about 50 database tables that can be maintained by the
web-application. So it requires at least 50 types of business components which have
to communicate in order to create transactions. Being a web-application, its re-
quirements are frequently changed, so the communication graph of the components
is changed again and again. But one can change the functionalities easily because
the essence of the transactions are described in aspects.

Of all the aspect-oriented systems I chose the AspectJ because of its expressive
pointcut system. Moreover, those languages are not so mature, so they are devel-
oped quickly and often contain new tools. New tools always give new thoughts.

References
[1] Component Software: Beyond Object-Oriented Programming, Clements Szyper-

ski, Addison-Wesley, 1998.
[2] Extreme Programming: A Gentle Introduction,

http://www.extremeprogramming.org/
[3] Aspect-Oriented Software Development Community, http://aosd.net
[4] Aspect-Oriented Refactoring: Part 1, Overview and Process, Ramnivas Laddad,

http://www.theserverside.com/articles/article.jsp?l=
AspectOriented

[5] Aspect-Oriented Refactoring: Part 2, The Techniques of the Trade,
Ramnivas Laddad, http://www.theserverside.com/articles/
article.jsp?l=AspectOriented

[6] AspectJ Project, http://eclipse.org/aspectj
[7] Java Server Pages, Sun Microsystems,

http://java.sun.com/products/jsp/
[8] Java 2 Standart Editon, Sun Microsystems,

http://java.sun.com/j2se/1.5.0/
[9] Java Specification Request: A Metadata Facility for the JavaTM Programming Lan-

guage, http://www.jcp.org/jsr/detail/175.jsp


