
6 th International Conference on Applied Informatics
Eger, Hungary, January 27–31, 2004.

The Asymptotic Covariance of Kernel Type
Density Estimators for Random Fields∗

István Fazekasa, Alexey Chuprunovb

aInstitute of Informatics, University of Debrecen
e-mail: fazekasi@inf.unideb.hu

b Research Institute of Mathematics and Mechanics, Kazan State University
e-mail: alexey.chuprunov@ksu.ru

Abstract
Kernel type density estimators are studied for random fields. It is proved

that the estimators are asymptotically normal if the set of locations of obser-
vations become more and more dense in an increasing sequence of domains.
It turns out that in our setting the covariance structure of the limiting normal
distribution can be a combination of those of the continuous parameter and
the discrete parameter cases. The proof is based on a new central limit the-
orem for α-mixing random fields. Simulation results support our theorems.
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1. Introduction

The main result of this paper is Theorem 2.1. It states asymptotic normality of
the kernel type density estimator when the set of locations of observations become
more and more dense in an increasing sequence of domains. It turns out, that the
covariance structure of the limit normal distribution depends on the ratio of the
bandwidth of the kernel estimator and the diameter of the subdivision. This is
an important issue when we approximate the integral in the estimator fTn(x) =
1

|Tn|
1
hn

∫
Tn

K
(

x−ξt
hn

)
dt by a sum, i.e. in practical applications we use an estimator

of the form fDn(x) =
1

|Dn|
1
hn

∑
i∈Dn

K
(

x−ξi
hn

)
.
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Kernel type density estimators are widely studied, see e.g. Bosq [1], Kutoyants
[10], Prakasa Rao [14]. Several papers are devoted to the density estimators for
weakly dependent stationary sequences (see, e.g., Castellana and Leadbetter [3],
Bosq et al. [2], Liebscher [13]). A few papers study the relation of the rate of
dependence and the asymptotic behaviour (see, e.g., Csörgő and Mielniczuk [5]).

The asymptotic normality of the kernel type density estimator is well known for
weakly depenedent continuous time processes (see, e.g., Bosq et al. [2]). However,
when we calculate numerically the kernel type density estimator, its asymptotic
variance can be different from that of the theoretical one. To point out this phe-
nomenon is the goal of our paper, and therefore we turn to so called infill-increasing
setup.

In statistics, most asymptotic results concern the increasing domain case, i.e.
when the random process (or field) is observed in an increasing sequence of domains
Tn, with |Tn| → ∞. However, if we observe a random field in a fixed domain and
intend to prove an asymptotic theorem when the observations become dense in that
domain, we obtain the so called infill asymptotics (see Cressie [4]). In this paper we
combine the infill and the increasing domain approaches. We call infill-increasing
approach if our observations become more and more dense in an increasing sequence
of domains. Using this setup, Lahiri [11] and Fazekas [7] studied the asymptotic
behaviour of the empirical distribution function. General central limit theorems
were obtained in Lahiri [12] for spatial processes under infill-increasing type designs.

The main result is in Section 2. Theorem 2.1 states asymptotic normality of
the kernel type density estimator (3) in the infill-increasing case. The underlying
random field is α-mixing. The conditions are similar to those of Theorem 2.2
(continuous time process) and Theorem 3.1 (discrete time process) of Bosq et al.
[2]. Our result is in some sense between the discrete and the continuous time cases.
The proof is given in Section 3. The basic tool is Theorem 3.1. It is a central limit
theorem for random fields analogous to Theorem 1.1 in Bosq et al. [2]. In Section 4
we give examples. Simulation results support the covariance structure of the limit
distribution presented in Theorem 2.1. The results of this paper were announced
at conferences, see e.g. Fazekas [8].

2. Asymptotic normality of density estimators

The following notation is used. N is the set of positive integers, Z is the set
of all integers, Nd and Zd are d-dimensional lattice points, where d is a fixed
positive integer. R is the real line, Rd is the d-dimensional space with the usual
Euclidean norm ‖x‖. In Rd we shall also consider the distance corresponding to
the maximum norm: %(x,y) = max1≤i≤d |x(i)−y(i)| , where x = (x(1), . . . , x(d)),
y = (y(1), . . . , y(d)). The distance of two sets in Rd corresponding to the maximum
norm is also denoted by % : %(A,B) = min{%(a, b) : a ∈ A, b ∈ B}.

|D| denotes the cardinality of the finite set D and at the same time |T | denotes
the volume of the domain T .

We suppose the existence of an underlying probability space (Ω,F ,P). The σ-



I. Fazekas, A. Chuprunov: Asymptotic Covariance of Kernel Density Estimators 99

algebra generated by a set of random variables is denoted by σ{.}. Sign E stands
for the expectation. The variance and the covariance are denoted by var(.) and
cov(., .), respectively.

Sign ⇒ denotes convergence in distribution. N (m,Σ) stands for the (vector)
normal distribution with mean (vector) m and covariance (matrix) Σ.

Describe the scheme of observations. Let Λ > 0 be fixed. By (Z/Λ)d we denote
the Λ-lattice points in Rd i.e. lattice points with distance 1/Λ:

(Z
Λ

)d

=

{(k1
Λ
, . . . ,

kd
Λ

)
: (k1, . . . , kd) ∈ Zd

}
.

Let T1, T2, . . . be bounded, closed rectangles in Rd with edges parallel to the axes.
Suppose that

T1 ⊂ T2 ⊂ T3 ⊂ . . . ,
⋃∞

i=1
Ti = T∞. (1)

We assume that the length of each edge of Tn is integer and converges to ∞, as
n → ∞. Let {Λn} be an increasing sequence of positive integers and let Dn be the
Λn-lattice points belonging to Tn, i.e., Dn = Tn ∩ (Z/Λn)

d.
Let ξt, t ∈ T∞, be a strictly stationary random field with unknown continuous

marginal density function f . The n-th set of observations involves the values of
the random field ξt taken at each point k ∈ Dn. We shall estimate f from the data
ξk, k ∈ Dn. Actually, each k = k(n) ∈ Dn depends on n but to avoid complicated
notation we often omit superscript (n). By our assumptions, limn→∞ |Dn| = ∞.

We need the notion of α-mixing (see e.g. Doukhan [6]). Let A and B be two
σ-algebras in F . The α-mixing coefficient of A and B is defined as follows.

α(A,B) = sup{|P(A)P(B)− P(AB)| : A ∈ A, B ∈ B}.
The α-mixing coefficient of {ξt : t ∈ T∞} is

α(r) = sup{α(FI1 ,FI2) : %(I1, I2) ≥ r},
where Ii is a finite subset in T∞ and FIi = σ{ξt : t ∈ Ii}, i = 1, 2. We shall use
the following condition. For some 1 < a < ∞

∫ ∞

0

s2d−1α
a−1
a (s)ds < ∞ . (2)

A function K : R → R will be called a kernel if K is a bounded, contin-
uous, symmetric density function (with respect to the Lebesgue measure), and
lim|u|→∞ |u|K(u) = 0,

∫ +∞
−∞ u2K(u) du < ∞ . Let K be a kernel and let hn > 0,

then the kernel-type density estimator is

fn(x) =
1

|Dn|
1

hn

∑
i∈Dn

K

(
x− ξi
hn

)
, x ∈ R . (3)

Let fu(x, y) be the joint density function of ξ0 and ξu, u 6= 0. Denote Rd
0 the

set Rd \ {0}. Let
gu(x, y) = fu(x, y)− f(x)f(y), u ∈ Rd

0, x, y ∈ R. (4)
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We assume that gu(x, y) is continuous in x and y for each fixed u. Let gu denote
gu(x, y) as a function g : Rd

0 → C(R2), i.e. a function with values in C(R2), the
space of continuous real-valued functions over R2. Let ‖gu‖ = sup(x,y)∈R2 |gu(x, y)|
be the norm of gu.

For a fixed positive integer m and fixed distinct real numbers x1, . . . , xm, let

σ(xi, xj) =

∫

Rd
0

gu(xi, xj) du , i, j = 1, . . . ,m, (5)

Σ(m) =
(
σ(xi, xj)

)
1≤i,j≤m

. (6)

Theorem 2.1. Assume that gu is Riemann integrable (as a function g : Rd
0 →

C(R2)) on each bounded closed d-dimensional rectangle R ⊂ Rd
0, moreover ‖gu‖ is

directly Riemann integrable (as a function ‖g‖ : Rd
0 → R). Let x1, . . . , xm be given

distinct real numbers and assume that Σ(m) in (6) is positive definite. Suppose that
there exists 1 < a < ∞ such that (2) is satisfied and

(hn)
−1 ≤ c|Tn|

a2

(3a−1)(2a−1) for each n . (7)

Assume that limn→∞ Λn = ∞ and limn→∞ hn = 0. If

lim
n→∞

1

Λd
n

1

hn
= 0, (8)

then
√

|Dn|
Λd
n

{(
fn(xi)− Efn(xi)

)
, i = 1, . . . ,m

}
⇒ N (0,Σ(m)), as n → ∞. (9)

If, instead of (8),

lim
n→∞

1

Λd
n

1

hn
= L > 0 (10)

is satisfied, then (9) remains valid if Σ(m) is changed for

Σ
′(m) = Σ(m) +D , (11)

where D is a diagonal matrix with diagonal elements Lf(xi)
∫ +∞
−∞ K2(u) du, i =

1, . . . ,m.
If f(x) has bounded second derivative and limn→∞ |Tn|h4

n = 0, then in (9)
Efn(xi) can be changed for f(xi), i = 1, . . . ,m, and both of the above statements
remain valid.

3. Proof of the main result

First we turn to the version of the central limit theorem appropriate to our
sampling scheme. Our Theorem 3.1 is a modification of Theorem 1.1 of Bosq et
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al. [2]. The novelties of Theorem 3.1 are the infill-increasing setting and that it
concerns random fields.

Define the discrete parameter (vector valued) random field Yn(k) as follows.
For each n = 1, 2, . . . , and for each k ∈ Dn

let Yn(k) = Yn(k
(n)) be a Borel measurable function of ξk(n) . (1)

Theorem 3.1. Let ξt be a random field and let Yn(k) = (Y
(1)
n (k), . . . , Y

(m)
n (k))

be an m-dimensional random field defined by (1). Let Sn =
∑

k∈Dn
Yn(k), n =

1, 2, . . . . Suppose that for each fixed n the field Yn(k), k ∈ Dn, is strictly stationary
with EYn(k) = 0. Assume that

‖Yn(k)‖ ≤ Mn, (2)

where Mn depends only on n;

sup
n,k,r

E
(
Y (r)
n (k)

)2
< ∞; (3)

for any increasing, unbounded sequence of rectangles Gn with Gn ⊆ Tn

lim
n→∞

1

Λd
n|Gn|

E

[ ∑

k∈Gn

Y (r)
n (k)

∑

l∈Gn

Y (s)
n (l)

]
= σr,s, r, s = 1, . . . ,m, (4)

where Gn = Gn ∩ (Z/Λn)
d; the matrix Σ = (σr,s)

m
r,s=1 is positive definite; there

exists 1 < a < ∞ such that (2) is satisfied; and

Mn ≤ c|Tn|
a2

(3a−1)(2a−1) for each n. (5)

Then
1√

Λd
n|Dn|

Sn ⇒ N (0,Σ), as n → ∞. (6)

The proof of Theorem 3.1 can be found in Fazekas and Chuprunov [9].
Remark. We fix the notion of direct Riemann integrability for nonnegative

functions defined on Rd
0 and (possibly) unbounded at the origin.

Let l : Rd
0 → [0,∞) be given. For an h > 0 consider a subdivision of Rd into

(right closed and left open) d-dimensional cubes ∆i, with edge length h such that
the center of ∆0 is the origin 0 ∈ Rd. The family {∆i} is called the subdivision
corresponding to h. If i 6= 0, for x ∈ ∆i, then let lh(x) = sup{l(y) : y ∈ ∆i},
lh(x) = inf{l(y) : y ∈ ∆i}, while lh(x) = lh(x) = 0 if x ∈ ∆0. If

lim
h→0

∫

Rd

lh(x) dx = lim
h→0

∫

Rd

lh(x) dx = I

and this common value is finite, then l is called directly Riemann integrable (d.R.i.)
and I is its direct Riemann integral.
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Using Zorich [15], we obtain the following. Call a stripe a set M = R1 \ R2,
where R1 is a closed d-dimensional rectangle while R2 (∅ 6= R2 ⊂ R1) is an open
d-dimensional rectangle both having center at the origin. Let l ≥ 0 be d.R.i. Then
l is Riemann integrable on each stripe. The improper integral

∫
Rd

0
l(x) dx exists

and it is equal to the direct Riemann integral of l. Moreover, for any ε > 0 there
exists a stripe M such that

∫
Rd

0\M
l(x) dx ≤ ε.

Let hn be positive numbers converging to zero, and let {∆(n)
i } be the sub-

division corresponding to hn. Then for any ε > 0 there exists a stripe M such
that all Riemannian approximating sums (based on the above subdivisions but not
containing term |∆0|l(x0)) of the integral

∫
Rd

0\M
l(x) dx are less than ε. ¤

Remark. We shall use the limit relations on p. 36 of Prakasa Rao [14]. In
particular, if the density function f is continuous, K is a kernel, then as hn → 0
(hn > 0), we have the following.

var
{ 1√

hn

K
(x− ξi

hn

)}
→ f(x)

∫ +∞

−∞
K2(u) du ; (7)

cov
{ 1

hn
K
(xr − ξi

hn

)
,

1

hn
K
(xs − ξi

hn

)}
→ −f(xr)f(xs) , if xr 6= xs. (8)

If fu(x, y) is continuous in x and y, then

cov
{ 1

hn
K
(xr − ξi

hn

)
,

1

hn
K
(xs − ξj

hn

)}
→ gi−j(xr, xs) , if i 6= j. (9)

If the second derivative of f is bounded, then

E
1

hn
K
(x− ξi

hn

)
− f(x) = O(h2

n) , as hn → 0. (10)

This last relation can be proved using Taylor’s expansion, see e.g. Bosq [1], p. 44.
¤

Proof of Theorem 2.1. We have to check the conditions of Theorem 3.1. Let
x1, . . . , xm be fixed distinct real numbers and define the m-dimensional random
vector Xn(i) with the following coordinates:

X(r)
n (i) =

1

hn
K

(
xr − ξi
hn

)
− 1

hn
EK

(
xr − ξi
hn

)
, (11)

for r = 1, . . . ,m, and i ∈ Dn. Divide Tn into d-dimensional unit cubes (having Λd
n

points of Dn in each of them). Denote by D′
n the set of these cubes. Let Yn(k) be

the arithmetical mean of variables Xn(i) having indices i in the k-th cube. Then
for each fixed n, the field Yn(k), k ∈ D′

n, is strictly stationary with EYn(k) = 0.
We shall apply Theorem 3.1 to Yn(k), k ∈ D′

n, i.e. we shall use a non infill form of
that theorem.

As
‖Yn(k)‖ ≤ 2m

hn
‖K‖∞ ,
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(7) implies (2) and (5).
To prove (3), we calculate E

(
Y

(r)
n (k)

)2 such that in the double sum of covari-
ances we separate the variances. We obtain

E(Y (r)
n (k))2 =

1

Λd
n

1

hn
var

{ 1√
hn

K
(xr − ξi

hn

)}
(12)

+
1

Λ2d
n

∑∑
i6=j

cov
{ 1

hn
K
(xr − ξi

hn

)
,
1

hn
K
(xr − ξj

hn

)}
.

The bundedness of this expression can be checked similarly to the next part of the
proof.

To prove (4), let {Gn} be an increasing sequence of d-dimensional rectangles,
each Gn being union of d-dimensional unit cubes. Then

1

|Gn|
E





∑

k∈Gn∩Zd
Y (r)
n (k)

∑

l∈Gn∩Zd
Y (s)
n (l)



 = (13)

=
1

Λd
n|Gn|

∑

i∈Gn

∑

j∈Gn

cov
{ 1

hn
K
(xr − ξi

hn

)
,

1

hn
K
(xs − ξj

hn

)}
= A+B , (14)

where Gn = Gn ∩ (Z/Λn)
d, and A denotes the part of the sum with i = j, while B

denotes the part of the sum with i 6= j.
For A we have

A =
1

Λd
n

cov
{ 1

hn
K
(xr − ξi

hn

)
,

1

hn
K
(xs − ξi

hn

)}
. (15)

If r 6= s, using (8), we obtain that A → 0, as Λn → ∞. However, if r = s, by (7),

lim
n→∞

A = Lf(xr)

∫ +∞

−∞
K2(u)du ,

when (10) is satisfied, while limn→∞ A = 0, when (8) is satisfied. Now, turn to B.

B =
1

Λd
n|Gn|

∑∑
i6=j

{∫ +∞

−∞

∫ +∞

−∞

1

hn
K
(xr − u

hn

) 1

hn
K
(xs − v

hn

)
fi−j(u, v) dudv−

−
∫ +∞

−∞

1

hn
K
(xr − u

hn

)
f(u) du

∫ +∞

−∞

1

hn
K
(xs − v

hn

)
f(v) dv

}
. (16)

As the random field is strictly stationary, we can assume that the center of the
rectangle Gn is the origin. Then the set of vectors of the form i− j with i, j ∈ Gn

is 2Gn, where 2Gn is defined as (2Gn) ∩ (Z/Λn)
d. If u ∈ 2Gn is fixed, then denote

by |Gn,u| the number of pairs (i, j) ∈ Gn × Gn with i− j = u. Then

B =

+∞∫

−∞

+∞∫

−∞





1

hn
K
(xr − u

hn

) 1

hn
K
(xs − v

hn

)( 1

Λd
n

∑

u∈2G0
n

|Gn,u|
|Gn|

gu(u, v)
)


 dudv ,

(17)
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where 2G0
n = 2Gn \ {0}. Now fix an ε > 0. As ‖gu‖ is directly Riemann integrable,

one can find a stripe Mε ⊂ Rd (with center in the origin) such that
∫

Rd
0\Mε

‖gu‖ du ≤ ε (18)

and at the same time the Riemannian approximating sums of this integral do not
exceed ε if the diagonal of the subdivision is small enough. Therefore, as |Gn,u|

|Gn| ≤ 1,

1

Λd
n

∑

u∈2G0
n\Mε

|Gn,u|
|Gn|

‖gu‖ ≤ ε , (19)

when 1
Λd

n
is small enough, i.e. when n is large enough: n ≥ nε. Fix ε, Mε and

assume that n ≥ nε. Because gu is Riemann integrable as a function g : Rd
0 →

C(R2) on R for each bounded closed d-dimensional rectangle R in Rd
0, therefore we

have ∥∥∥ 1

Λd
n

∑

u∈2G0
n∩Mε

gu −
∫

Mε

gu du
∥∥∥ ≤ ε (20)

in the space C(R2), if n is large enough. This relation and (18) imply that∫
Rd

0
gu(x, y) du exists and it is continuous in (x, y). As each edge of Gn converges

to ∞, |Gn,u|
|Gn| → 1 uniformly according to u ∈ Mε. Therefore, using that ‖gu‖ is

directly Riemann integrable, we obtain that
∥∥∥ 1

Λd
n

∑

u∈2G0
n∩Mε

|Gn,u|
|Gn|

gu − 1

Λd
n

∑

u∈2G0
n∩Mε

gu

∥∥∥ ≤ ε , (21)

if n is large enough.
Relations (18), (19), (20), and (21) imply that

∥∥∥ 1

Λd
n

∑

u∈2G0
n

|Gn,u|
|Gn|

gu −
∫

Rd
0

gu du
∥∥∥ ≤ 4ε , (22)

if n is large enough.
Therefore, using that 1

hn
K
(
xr−u
hn

)
is a density function, we have

∣∣∣∣∣B −
+∞∫

−∞

+∞∫

−∞

{ 1

hn
K
(xr − u

hn

) 1

hn
K
(xs − v

hn

)∫

Rd
0

gu(u, v) du
}
dudv

∣∣∣∣∣ ≤ 4ε , (23)

if n is large enough. As
∫
Rd

0
gu(u, v) du is continuous according to (u, v), the limit

of the double integral in this expression is
∫
Rd

0
gu(xr, xs) du = σ(xr, xs).

Finally, we have to prove that in (9) Efn(xi) can be changed for f(xi). To this
end we have to prove that

√
|Dn|/Λd

n

(
Efn(x)− f(x)

)
→ 0. This is valid because,

by (10), h−2
n

(
Efn(x)− f(x)

)
is bounded, and

√
|Dn|/Λd

nh
2
n =

√
|Tn|h2

n → 0. ¤
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4. Examples

In this section we present a simple example that gives numerical evidence for
the phenomenon described in Theorem 2.1.

Let ξu, u ∈ Rd, be a stationary Gaussian random field with mean value function
zero and with covariance function ru. Assume that ru is continuous and r0 = 1.
Therefore ru → 1, as ‖u‖ → 0. It is plausible to assume that ru → 0, as ‖u‖ → ∞.
We need the joint density function of ξ0 and ξu, u 6= 0. Therefore we have to
assume that |ru| < 1 if u 6= 0. We strenghten this and assume that outside a
neighbourhood of the origin |ru| ≤ c < 1. Assume also that ru 6= 0, u ∈ Rd

0.
For any particular field ξu, we have to check if the conditions of Theorem 2.1

are satisfied. Here
gu(x, y) = fu(x, y)− f(x)f(y) , (1)

fu(x, y) =
1

2π
√

1− r2u
e−

1
2 (ax

2+ay2−2bxy) , f(x) =
1√
2π

e−
1
2x

2

,

where a = 1/(1 − r2u), b = ru/(1 − r2u). Now we study if the improper Riemann
integral

∫
Rd

0
‖gu‖ du exists and is finite. This is satisfied for the covariance function

ru, if ∫

O

1√
1− r2u

du < ∞ (2)

for a (closed, bounded) domain O containing a neigbourhood of the origin; and
∫

N

1√
1− r2u

− 1 du < ∞,

∫

N

∣∣∣∣
−r2u ± ru
1− r2u

∣∣∣∣ du < ∞ (3)

for N being the complementer of a bounded neigbourhood of the origin.
Example. Consider a Gaussian field ξ(u,v), (u, v) ∈ R2, with mean value

function zero and covariance function r(u,v) = e−(|u|+|v|), (u, v) ∈ R2. This function
satisfies the above mentioned conditions (2)–(3).

Example. (Simulation results.) Consider the Gaussian process ξ(u), u ∈ R,
with mean zero and covariance function ru = e−|u|, u ∈ R. This function satisfies
conditions (2)–(3). The direct Riemann integrability of ‖gu‖ is also satisfied.

We observe this process in the 1/Λ-lattice points of the domain T = [0, t] with
Λ = 200 and t = 100. That is the sample is z1 = ξ(1/200), . . . , zs = ξ(20000/200)
with s = 20000. Now the covariance matrix of this data vector is (r|i−j |)si,j=1,
where r = e−1/Λ. Therefore the data generation for the simulation is easy. Let
y1, . . . , ys be i.i.d. standard normal and choose zi = ri−1y1+

√
1− r2

∑i
j=2 r

i−jyj ,
i = 1, . . . , s.

Using this data, we gave kernel estimation for the density function of the process
(i.e. the standard normal density function). We calculated the estimator at points
x1 = −2, x2 = −1, x3 = 0, x4 = 1, x5 = 2. We used values of the bandwidth:
h1 = 0.01 and h2 = 0.001. We applied the standard normal density function as
kernel K.
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The simulations were performed with MATLAB. 500 repetitions were made.
The data sets for h1 = 0.01 and h2 = 0.001 were the same. The theoretical
values of the density function and the averages of their estimators are shown in the
following table.

x -2 -1 0 1 2
f(x) 0.0540 0.2420 0.3989 0.2420 0.0540

h = 0.01 estimators’ mean 0.0543 0.2418 0.4003 0.2414 0.0518
h = 0.001 estimators’ mean 0.0528 0.2422 0.4026 0.2445 0.0492

Then we calculated the empirical covariance matrices of our standardized esti-

mators (according to equation (9), the standardization factor is
√

|D|
Λ = 10).

Σ1 =




+0.0683 +0.0320 −0.0308 −0.0444 −0.0135
+0.0320 +0.2307 −0.0258 −0.1356 −0.0453
−0.0308 −0.0258 +0.2442 −0.0355 −0.0284
−0.0444 −0.1356 −0.0355 +0.2421 +0.0388
−0.0135 −0.0453 −0.0284 +0.0388 +0.0598




;

Σ2 =




+0.1339 +0.0379 −0.0296 −0.0451 −0.0162
+0.0379 +0.5481 −0.0085 −0.1544 −0.0482
−0.0296 −0.0085 +0.7092 −0.0416 −0.0205
−0.0451 −0.1544 −0.0416 +0.6002 +0.0459
−0.0162 −0.0482 −0.0205 +0.0459 +0.1116




.

Covariance Σ1 corresponds to bandwidth h1 while Σ2 corresponds to bandwidth
h2. The difference of the diagonals of Σ2 and Σ1 seems to be significant.

Now calculate the additional terms of the covariance matrices described in The-
orem 2.1. In our case

1

Λ

1

h
f(xi)

∫ +∞

−∞
K2(u) du =

1

200

1

h
f(xi)

1

2
√
π
.

Therefore the diagonal elements of the matrix D in Theorem 2.1 for h1 = 0.01 and
h2 = 0.001 are the following:

diagD1 =
[
0.0076 0.0341 0.0563 0.0341 0.0076

]
;

diagD2 =
[
0.0762 0.3413 0.5627 0.3413 0.0762

]
.

As in the infill-increasing case only the diagonals of the limit covariance matrices
can be different for different values of the bandwidth, we show in the following
table the diagonal of the differences of the empirical and that of the theoretical
covariance matrices.

diag(D2 −D1) 0.0686 0.3072 0.5064 0.3072 0.0686
diag(Σ2 − Σ1) 0.0656 0.3174 0.4649 0.3582 0.0517

The results show that the diagonal matrix D of Theorem 2.1 explains well the
dependence of the limit covariance matrix on the bandwidth.
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