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Abstract

The hypothesis that for a given amount of training data a speaker model
has an optimum number of components has been examined. This is inves-
tigated with regard to Gaussian mixture models (GMM) and Vector Quan-
tisation (VQ). There were performed measurements for comparison of the
two methods. The measurements have been performed on two databases,
the TIMIT database with English speakers and the MTBA database with
Hungarian speakers

1. Introduction

Among the various techniques in which pattern recognition has been used, the
statistical approach has been most intensively studied and used in practice. The
design of a recognition system requires careful attention in the following issues:
pattern representation, feature extraction, classifier design and learning and per-
formance evaluation.[13] The objective of this paper is to apply statistical methods
to a special problem of pattern recognition, the Speaker Identification and to com-
pare these methods on various speech databases.

The goal of speaker identification is to automatically determine a speaker iden-
tity by his-her voice among a population. In general, a speaker identification system
may be either text-dependent, where a password or a reciatation of a prompted
text is needed, or text independent, where arbitrary text is allowed to utter. We
would like to present a unified view of the two methods applied successfully in
Speaker Identification systems.These two methods are the Vector Quantisation
(VQ)[1][2][3][4][5] and Gaussian Mixture Model (GMM) [6] [7], both of them be-
longs to model based approach because for each speaker a parametric statistical
model is created to characterize the speaker’s voice.
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2. Clustering

Cluster analysis is a very important and useful technique. The speed and relia-
bility of a clustering algorithm on organizing large amount of data constitute strong
reasons to use in real time applications. There are a lot of well-known clustering
algorithms, most of them based on the following two popular clustering techniques:
iterative square-error partitional clustering and agglomerative hierarchical cluster-
ing. Hierarchical techniques organize data in a nested sequence of groups, which
can be displayed in the form of a dendogram or a tree. Square-error partitional
clustering algorithms try to obtain that partitioning of the input data, which mini-
mizes the within-cluster scatter or maximizes the between-cluster scatter. Because
we used only partitional clustering algorithms, we will present in detail such a
clustering algorithm.

We would like to outline the facts that every clustering algorithm will find
clusters in a given dataset whether they exist or not, and there is no best clustering
algorithm. The problem of partitional clustering can be formulated as follows:
Given n patterns in a d-dimensional metric space, determine a partition of the
patterns into K clusters, such that patterns in a cluster are more similar to each
other than to patterns in different clusters. [8] In the following subsections we
present two partitional clustering methods, the square error clustering and mixture
decomposition. The Vector Quantisation approach for speaker identification is
based on square error clustering, and Gaussian Mixture Model can be viewed as a
mixture decomposition. Of course, because square error clustering is a particular
case of mixture decomposition, the VQ model will be a particular case of GMM.

2.1. Square error clustering - Vector quantisation

This type of clustering tries to find that partition which for a fixed number of
clusters minimizes the square error. In case of D-dimensional input patterns X =
{x1, x2, . . . , xn} we obtain a partition formed from K clusters {C1, C2, . . . , CK}.
Every input pattern is attached to exactly one cluster, so cluster Ck has nk patterns
and

∑K
k=1 nk = n.

The mean vector, or center of cluster, Ck is defined as the centroid of the cluster

m(k) =
1

nk

nk∑
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x
(k)
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(k)
i is the ith pattern belonging to cluster Ck. The square error for the
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The square error for the entire clustering containing K clusters is

E2
k =

K∑

k=1

e2k (3)

The objective of a square error clustering method is to find that partition with
K clusters which minimizes (3).

The objective of VQ is the representation of a set of input patterns (feature
vectors) X = {x1, x2, . . . , xn} by a set Y = {y1, y2, . . . , yK} of K reference vectors
in RD(D is the dimension of a feature vector). Y is called codebook and its elements
codewords.

A VQ can be represented as a function q : X → Y. If we know q, we can obtain
a partition S of X formed by the K subsets Si (cells)

Si = {x ∈ X : q(x) = yi}, i = 1, 2, . . .K

The quantization error of a vector x will be noted by d(x, q(x))¸ where d is
a metric distance. The mean quantization error (MQE) is used to evaluate the
performance of a quantizer.

MQE = D({Y, S}) = 1

n

n∑

i=1

d(xi, q(xi)) =
1

n

K∑

i=1

Di (4)

where we indicate with Di the ith cell total distortion. Given a fixed codebook
Y, the nearest neighbour condition consists in assigning to each input vector the
nearest codeword. This will divide the input patterns into:

Si = {x ∈ X : d(x, yi) ≤ d(x, yj), j = 1, 2, . . .K, j 6= i} , i = 1, 2, . . .K

The sets Si constitute a partition of the input patterns and it is the Voronoi
partition[10]. It is possible to demonstrate that the Voronoi partition is optimal.

Another interesting problem is finding the optimal codebook for a fixed parti-
tion. This will be the codebook formed by the centroid of each cell. If we consider
a set A constituted by NA elements, its centroid x(A) is defined as

x(A) =
1

NA

∑

x∈A

x (5)

The codebook x(S) constituted by the centroid of all the cell of S

x(S) = {x(Si) : i = 1, 2, . . . ,K} (6)

is optimum[9]̧ because for every codebook Y it holds

D({Y, S}) ≥ D({x(S), S})
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We can conclude that these two concepts, square error clustering and vector
quantisation, lead to the same algorithm. So the generalized Lloyd vector quanti-
sation algorithm used in communication and compression domain is equivalent to
the K-means algorithm. Thus the problem of vector quantisation can be posed as
a clustering problem, where the number of clusters K is the number of the quanti-
sation levels. An important problem is the selection of the number of quantisation
levels. A number of techniques, such as the minimum description length principle
(MDL), can be used to select this parameter. The supervised version of VQ is
called learning vector quantisation(LVQ).

2.2. Mixture decomposition - Gaussian Mixture Model

Finite mixture is a powerful probabilistic method. It can be used for modeling
arbitrary complex probability density functions. Mixtures adequately model situ-
ations where each pattern has been produced by one of a set of alternative sources
(single state Hidden Markov Model [11]).

Now we give a short description of the mixture decomposition. Consider the
following scheme for generating random samples. There are K random sources,
each characterized by a probability density function pm(y|θm), parameterised by
θm, m = 1, 2, . . .K. The sample generation will consist of two steps. First we choose
randomly one of these sources, with probabilities {α1, α2, . . . , αK}, and then we get
a sample form the chosen source. The random variable defined by this process is
characterized by a finite mixture distribution. So the probability density function
will be:

p
(
y|Θ(K)

)
=

K∑

m=1

αmpm(y|θm) (7)

where each pm(y|θm) is called a component, and

Θ(K) = {θ1, θ2, . . . , θK , α1, α2, . . . , αK} (8)

Although these mixtures can be built from different types of components, in prac-
tice we use the Gaussian components, so that’s why we use the term Gaussian
mixtures. There are two problems concerning this method: 1) how to estimate the
parameters of the model and 2) how to estimate the number of components. The
answer for the first problem is the expectation maximization algorithm (EM). The
answer for the second question is more difficult. We will present some experimental
results in case of speaker identification problem.

GMM can be viewed as a particular case of mixture decomposition because we
use decomposition into normal densities. A normal density function will be noted
by N(µ,Σ), and pm(y|θm) will become

pm(y|N(µ,Σ)) =
1

(2π)D/2 |Σ|1/2
e−

1
2 (y−µ)TΣ−1(y−µ) (9)

where y ∈ RD, µ is the mean vector and Σ is the covariance matrix.
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3. Experimental results

3.1. Acoustic parameters

Before frame segmentation a preprocessing was performed on the signal con-
sisting from direct component removal and high emphasis filtering with H(z) =
1− 0.95 · z−1. After preprocessing we performed a short-term mel cepstrum analy-
sis with 30 ms Hamming window and 10 ms shift. From every frame we extracted
12 mel-cepstral coefficients. The details about the feature extraction can be found
in every speech signal-processing book [11], [12].

3.2. Speech corpus

We used two databases, the TIMIT speech database that contains 630 Eng-
lish speakers recorded using microphone and MTBA database with 500 Hungarian
speakers recorded by telephone.

3.3. VQ model experiments

We built VQ models as explained in section (2). The identification process was
the usual one. First we extracted the feature vectors from the unknown speaker
utterance. Let this be X = {x1, x2, . . . xT }, xi ∈ RD. Suppose that we have N
speaker models {λ1, λ2, . . . , λN}. So the identification process will take the decision
with respect to the following formula:

Id = arg min
i=1,N

d(X,λi) (10)

where d(X,λi) is the distance between X and λi. Let λi =
{
µ
(1)
i , µ

(2)
i , . . . , µ

(K)
i

}

be the model for the ith speaker. We can compute d(X,λi) using the following
formula:

d(X,λi) =
1

T

T∑

j=1

min
k=1,K

dE(xj , µ
(k)
i ) (11)

where dE(., .) represents the Euclidian distance in RD.

We compared the recognition performance of a VQ model with different quanti-
sation levels (number of components, number of centroids) for TIMIT and MTBA
database. We used 50 speakers from each databases and constructed models with
quantisation levels {1, 2, 4, 8, 16, 32}. The data from each speaker were divided into
training (80%) and testing data (20%). The following diagram shows the results.
It is obvious that for models with 16 or 32 components the identification rates
measured on the two databases are very close to each other.



70 6 th International Conference on Applied Informatics

3.4. GMM model

A GMM model for the ith speaker will be formed by λi = {(αj , µj ,Σj) | j =

1, . . . ,K}, where ∑K
j=1 αi = 1. These parameters are estimated from the same

training data as in the case of the VQ model, but in this case we use the Expectation
Maximisation algorithm. This is an iterative estimation procedure and because it
is very sensitive to the initial values of the parameters, we performed a clustering
and the mean vectors µj were initialized with the centroids of the clusters. We used
αj =

1
K and Σj = I, j = 1, . . . ,K (identity matrix) for the other parameters.

The identification was performed as usually. Suppose that we have the GMM
models created, let denote these by {λ1, λ2, . . . , λN}. First we extracted the features
from the unknown speaker speech utterance and obtained X = {x1, x2, . . . , xT }.
Our objective is to find the model, which has the maximum a posteriori probability
for the given observation sequence X. We want to find the maximum of p(λk|X)
with respect to k. We can use Bayes formula and get

p(λk|X) =
p(X|λk) · p(λk)

P (X)
(12)

Assuming that every speaker is equally likely p(λk) =
1
N and p(X) is the same,

the classification rule simplifies to finding the maximum of p(X|λk), which can be
computed by formula

p(X|λk) =

T∏

t=1

p(xt|λk) (13)

where p(xt|λk) can be computed using formula (7).



M. Antal: Statistical Methods for Speaker Identification 71

We used the same speakers as in the previous experiment and constructed GMM
models with {1, 2, 4, 8, 16, 32} components. We also used the same partitioning of
the data into training and testing data. In this case the results for the TIMIT
database were better than the results obtained for the MTBA database.

3.5. VQ-GMM

We also compared the identification error on the same database in the case of
the two methods. The results are represented in the following diagrams:

4. Conclusions

We can see that in case of VQ models there are no significant differences in
identification error rate using the two databases. So the speech quality does not
affect seriously this type of speaker model. From the second experiment we con-
clude that while the GMM performs better with TIMIT database, for MTBA we
haven’t obtained the same good results. Of course this is due to the speech quality,
especially in our case to telephone quality speech.
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