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Abstract

In this paper we will approximate points which mark the geometrical po-
sition of special probes. The aim of the approximation is to generate a closed,
compact and mushroom-shape surface which comply with the geological form
of the methane. We will show a new technique which fulfils the geological
requirement and which is more efficient than the known methods in the lit-
erature [1], [2], [3], [4], [5]. In this paper we will illustrate this comparison
with expressive examples.

Categories and Subject Descriptors: I.3.5 [Computational Geometry
and Object Modeling]: Curve, surface, solid, and object representations;

Key Words and Phrases: approximation-interpolation methods, geologi-
cal reserve calculating

1. Introduction

The very spectacular development and the big opportunities of informatics
brought about a radical change in the classical numerical methods. The continual
and deterministic methods are going to be replaced by discrete ones that from a
practical point of view work under a given limit of error. We are going to show
through a given application such a new discrete numerical solution that approxi-
mates geometrical points in given conditions. The origin of the discussed problem
is the modelling of real geological reserve calculating. This problem is about given
n points that mark the geometrical position of special probes. (We have relatively
small amount of points, because constructing a probe can be too costly). The data
supplied by these probes constitutes the basis for drawing the geometrical shape
of the methane.
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How should we begin graphically reconstructing the methane? Naturally first
we look up in the literature, what the experts in the field propose. The literature
proposes for drawing the surfaces by Gauss’s less square method. To be exact he
talks about polynomial and harmonic surfaces that are modeled with double Fourier
series [1], [2], [3]. But neither of the methods deals with the logical requirement that
the methane must have a compact form. One of the simple ways to examine this is
that the contour lines of the surface have to be closed. It is a natural requirement
that the methane must be compact, so finite and closed. How good it would be if
some reserves of methane or petrol were infinite! So we have to look for another
model. One of the new and strong devices of the modern numerical analysis is the
spline. Each spline has a spatial and plan variant: Besier and B-Spline. Probably
with the efficient use of some of these splines our problem can be adequately solved,
but there are disadvantages. First of all the points have to be arranged in a grid
to order for us to draw the surface. Secondly, it is true that the surface originated
like this is in the convex hull of the grid, but this does not mean that our surface
will be closed.

These arguments made us think of a new approximation, called discrete ap-
proximation which guarantees that we approximate the points with compact form.
There is a philosophical argument too which supports our method. For us every
piece of information is just the coordinate of points. Who can tell if the searched
surface is polynomial or harmonic or just some special function? There is no ar-
gument supporting this choice. On the contrary, we are concerned about what we
can achieve with points as only sources.

Furthermore it is an important geological requirement and an empirical fact
that methane and petrol have the shape of a mushroom or a done. They cannot
have a polyhedron like, plicate surface or any other rippling surface. These facts
were justified by geological excavation. That is the reason why we could test only
empirically the formula and solutions proposed by us.

2. Presentation of the method

Points (x(i), y(i), z(i)), i = 1, . . . , n are given and we want to approximate these
with a compact surface. The idea is the following: we look for a z = F (x, y)-like
implicit function that we can analyze only in a discrete form, so point-like. We
analyze them in the following form for given x and y values:

F (x, y) := (zmax − zmin) +

n∑
i=1

d((x, y), (x(i), y(i)))z(i)

n∑
i=1

d((x, y), (x(i), y(i)))

+
d((x, y), (x(k), y(k)))z(k)

factor
+

d((x, y), (x(l), y(l)))z(l)

factor

+
d((x, y), (x(m), y(m)))z(m)

factor
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where d(A,B) is the Euclidian distance between points A and B, the factor is
a constant real number with which we can increase or diminish the effect of the
nearest 3 points. Its numerical value depends on the value of z (We chose it the
following way: if z(i) has two or three digits than factor = 10.000, if it has 4 digits
then factor = 100.000. So we can decide the value of the factor only empirically.
zmax , respectively zmin are the highest and the lowest z values. The k, l,m index
values mark the 3 nearest points.

The

Fd(x, y) =

n∑
i=1

dizi

n∑
i=1

di

formula gives the essence of the approximation. Here we have to make an important
remark. During the accomplishment of our research plan, and the examination of
the literature we found out that there was already a very similar method to our
own, an approximation-interpolation method [4], [5]. This is called the calculating
of the arithmetic mean powered by the inverse of distance. This proved that we
were on the right path and in an important field. The formula is:

Fi(x, y) =

n∑
i=1

zi
di

n∑
i=1

1
di

.

Of course we can go on refining our method and we can take the square of the
distances:

Fd2(x, y) =

n∑
i=1

d2i zi

n∑
i=1

d2i

the calculating of arithmetic mean powered by the square of the distance or more
simply the arithmetic mean powered by distance.

Probably this is a mathematically not too significant formula, because it ex-
presses a simple relation between a powered mean and some effect of the surround-
ing points. But let us take a look at the drawings. We get extremely beautifully
surfaces with this formula. We had the contour lines and the spatial axonometrycal
image of the surface drawn.

For admitting that the contour lines will be closed it is enough to admit that
the contour lines will occupy the geometrical place of points that have constant
potential energy. More exactly its distance measured from the three nearest points
plus a powered mean are constant.

We have to admit that this surface is always compact. It is logical that the
points (x, y) ∈ [a, b]× [c, d] can change in a closed rectangle-shaped region. In this
case F (x, y) cannot be highest than 2zmax and smaller than zmin.
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Let us analyse the drawings. The first drawing was made with the Fd formula,
the second with Fd2, the third with Fi, the fourth with Gauss method, while
the fifth with Lagrange’s method. It is obvious that from the point of view of the
primary requirement (compact and mushroom-shaped) the worst is the Fi formula,
after that the Lagrange method while the Fd2 gives a good solution.

In the first three cases we had the axonometrycal image together with the
contour lines drawn. The drawings below were made on the basis of different data
series and methods. With the last two methods we used the functions of the Maple
and Matlab programs.

3. Conclusions

We called our method to be worked out discrete approximation. After the
examination of the literature we found it more convenient to name the formulas
in a more concrete way, as it follows: the arithmetic mean powered by distance,
the arithmetic mean powered by the square of distance and the arithmetic mean
powered by the inverse of distance. Of course all these kinds of methods can be
called discrete approximation. So the discrete approximation could function as a
collective concept.

There are very small differences in the formulas, but from the point of view
of the practical application they have a huge importance: the arithmetic mean
powered by square of distance that we proposed meets almost entirely the system
of requirements that we formulated: the surface is always compact and it has the
shape of a mushroom.

As this is a hypothetical model, in the next step we should find an excavation
site with real data to compare the excavated volume with the volume that we well
receive with our method.

Data series 1
X = [−31,−30, 1, 2, 30, 31];
Y = [30,−30, 31,−29, 29,−31];
Z = [20, 20,−50,−50, 20, 20];

Fd1 Fd21 Fi1
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Gauss1 Lagrange1

Data series 2
X = [−31,−30, 1, 2, 30, 31, 90, 91];
Y = [30,−30, 31,−29, 29,−32, 60,−60];
Z = [20, 20,−50,−50, 20, 20,−80,−80];

Fd2 Fd22 Fi2

Gauss2 Lagrange2

Data series 3
X = [10, 39, 80, 20, 56, 77, 29, 18, 98,−25,−12, 68, 50, 30,−54,−86, 2,−7, 45,−70];
Y = [20, 12,−23, 0, 41,−25, 35, 30, 100,−50,−16,−41, 77, 85, 61, 1,−79, 49,−85,−44];
Z = [10, 30, 25, 47, 39, 10, 39, 70, 52, 89, 64, 23, 51, 68, 53, 89, 77, 96, 46, 30];

Fd3 Fd23 Fi3



414 6 th International Conference on Applied Informatics

Gauss3 Lagrange3

Data series 4
X = [10, 39, 80, 20, 56, 77, 29, 18, 98,−25,−12, 68, 50, 30,−54,−86, 2,−7, 45,−70];
Y = [20, 12,−23, 0, 41,−25, 35, 30, 100,−50,−16,−41, 77, 85, 61, 1,−79, 49,−85,−44];
Z = [10, 30, 25, 47, 39, 10, 39, 70, 52, 89, 64, 23, 51, 68, 53, 89, 77, 96, 46, 30] ∗ (−1);

Fd4 Fd24 Fi4

Gauss4 Lagrange4

Data series 5
X = [495492.00, 493859.00, 494593.00, 493601.64, 493329.50, 492790.30, 492345.99,

492660.71, 495104.87, 491737.32, 494365.64, 494743.82, 494116.98, 495493.50, 494780.18,

491268.56, 490744.75, 493878.82];
Y = [539437.00, 539120.00, 540812.00, 539894.23, 540970.67, 540217.93, 541224.26,

540916.71, 538445.50, 542150.12, 540361.50, 538880.43, 539803.83, 538917.87, 540406.97,

542143.40, 542628.66, 539856.97];
Z = [−1802.00,−1849.00,−1886.00,−1766.00,−1782.00,−1804.00,−1755.00,−1761.00,

− 1830.00,−1706.00,−1801.00,−1803.00,−1749.00,−1812.00,−1856.00,−1684.00,

− 1753.00,−1583.00];
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Fd5 Fd25 Fi5

Gauss5 Lagrange5
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