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Abstract

Free-form curves, such as B-spline and NURBS curves are defined in a
piecewise way over the domain of definition. The section points of the domain
are called knots. This paper is devoted to the geometrical and analytical
description of curve modification when one or more knot values are altered.
Based on the theoretical results some practical shape modification tools are
also discussed.
Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Com-
putational Geometry and Object Modeling: - Curve, surface, solid, and object
representations, Splines; J.6 [Computer-Aided Engineering]: Computer-aided
design (CAD);
Key Words and Phrases: B-spline curve, NURBS curve, knot modifica-
tion, constrained shape control

1. Introduction

Computer aided design and manufacture softwares use free-form curves, espe-
cially B-spline curves as standard design tools. One of the main advantages of
B-spline curve is the local modification possibility. Due to the local support of the
basis functions these curves are defined piecewisely over the domain of definition.
The section points of the domain are called knot values. The precise definition is
as follows:

Definition 1.1. The recursive function Nk
j (u) given by the equations

N1
j (u) =

{
1 if uj ≤ u < uj+1,
0 otherwise

Nk
j (u) =

u−uj

uj+k−1−uj
Nk−1

j (u) +
uj+k−u

uj+k−uj+1
Nk−1

j+1 (u)
(1)
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is called normalized B-spline basis function of order 1 < k (degree k − 1). The
numbers uj ≤ uj+1 ∈ R are called knot values or simply knots, and 0/0=̇0 by
definition.

Definition 1.2. The curve s (u) defined by

s (u) =

n∑

l=0

Nk
l (u)dl , u ∈ [uk−1, un+1] (2)

is called B-spline curve of order k (degree k− 1), (1 < k ≤ n+ 1), where Nk
l (u) is

the lth normalized B-spline basis function of order k, for the evaluation of which
the knots u0, u1, . . . , un+k are necessary. Points dl are called control points or de
Boor points, while the polygon formed by these points is called control polygon.

As one can observe, the kth order curve is uniquely defined by its control points
and knot values. In case of rational B-spline curves weights are associated with the
control points in addition. The properties of B-spline curves under control point
reposition and weight modification are well-known for a while (for an overview see
e.g. [9]). Several shape control tools were developed based on these properties:
beside the most basic ones one can find constrained shape control methods by
repositioning control points [2],[10], by modifying weights [5], [10] and by both [1].
It is a well-known fact that the alteration of the knot values also affects the shape
of the curve. The geometric properties of this effect has been described recently by
the authors [6], [7], [8]. In the next section we give an overwiev of these results. In
Section 3 the results are generalized for rational B-spline curves, while in Section
4 practical shape control methods are presented based on these theoretical results.

2. Geometrical properties of knot alteration

Modifying a knot ui between its neighbours ui−1 and ui+1 the basis functions
Nk

j (u) and the curve s (u) will also depend on ui which will be emphasized by
the notation Nk

j (u, ui) and s (u, ui). Actually s (u, ui) can be considered as a one-
parameter family of B-spline curves with the family parameter ui ∈ [ui−1, ui+1).
In [6] we proved the following theorem.

Theorem 2.1. The family of the kth order B-spline curves

s (u, ui) =

n∑

l=0

dlN
k
l (u, ui) ,

u ∈ [uk−1, un+1], ui ∈ [ui−1, ui+1), k > 2 has an envelope. This envelope is a
B-spline curve of order (k − 1) and can be written in the form

b (v) =

i−1∑

l=i−k+1

dlN
k−1
l (v) , v ∈ [vi−1, vi] ,
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where vj =

{
uj if j < i
uj+1 if j ≥ i

, that is the ith knot value is removed from the knot

vector (uj) of the original curves.

The envelope touches the elements of the family at the points associated with
the actual value of ui and their first derivatives are also proportional there. In [7]
this result has been extended for higher order derivatives:

Theorem 2.2. The relation between the derivatives of the two curves s (u, ui) and
b (v) at u = v = ui is

dr

dvr
b (v)

∣∣∣
v=ui

=
k − 1− r

k − 1

dr

dur
s (u, ui)

∣∣∣
u=ui

, r ≥ 0. (3)

Another stream of our research was the description of the movement of a single
point of the curve. If a control point, a weight or a knot value is modified, the points
of the curve move along special curves called paths. These paths are line segments
in the first two cases and have been desribed in [10]. Repositioning a control point
these line segments are parallel to the movement of the control point. Modifying
a weight of a control point the paths are line segments the endpoint of which is
the actual control point. Modifying a knot value these paths are rational curves
the degree of which decreases in a well-defined way. More precisely we proved the
following property (c.f. [6]).

Theorem 2.3. Modifying the single multiplicity knot ui ∈ [ui−1, ui+1] of the kth

order B-spline curve s (u), the point sj (ũ), ũ ∈ [uj , uj+1) moves along the path

sj (ũ, ui) =

j∑

l=j−k+1

dlN
k
l (ũ, ui) , ui ∈ [ui−1, ui+1] . (4)

These paths are rational curves for j ∈ [i− k+1, i+ k− 2], the degree of which
decreases symmetrically from k−1 to 1 as the indices of the arcs get farther from i,
that is, the paths of the points of the arcs si−l(u) and si+l−1(u) are rational curves
of degree k − l in ui (l = 1, . . . , k − 1).

Since the degree of these paths decreases symmetrically, an obvious corollary of
the theorem above is the following statement.

Consequence 2.1. For l = k − 1 the paths are of degree 1, that is, the points of
the arcs si−k+1(u) and si+k−2(u) move along straight line segments parallel to the
sides di−k,di−k+1 and di−1,di of the control polygon, respectively.

These theoretical results can be easily extended for knots with higher multiplic-
ity. In the next section we generalize the results for rational curves as well.

3. The rational case

We adopt the following definition of rational B-spline curves:
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Definition 3.1. The curve s (u) in Rd, (d > 1) defined by the formula

s (u) =

n∑

l=0

wldl
Nk

l (u)∑n
j=0 wjNk

j (u)
, u ∈ [uk−1, un+1]

is called rational B-spline (or NURBS) curve of order k (degree k−1), where Nk
l (u)

is the lth normalized B-spline basis function of order k, for the evaluation of which
the knots u0, u1, . . . , un+k are needed. Points dl ∈ Rd are called control or de Boor
points, and the scalars w0, w1, . . . , wn (wj ≥ 0) are called weights.

A rational B-spline curve of Definition 3.1 can be produced by projecting the
integral B-spline curve, determined by the same knots and the control points

[
w0d0

w0

]
,

[
w1d1

w1

]
, . . . ,

[
wndn

wn

]

in Rd+1, from the origin onto the hyperplane w = 1.
During central projection the degree of a curve can not increase, thus Theorem

2.3 is valid for the rational case as well. Consequence 2.1 changes a bit, since
central projection takes parallel lines to concurrent lines in general. Consequently,
modifying the knot ui of multiplicity m, paths of points of the arc si−k+1 (ũ, ui)
are concurrent lines the base of which is the point with homogeneous coordinates

(wi−kdi−k − wi−k+1di−k+1, wi−k − wi−k+1) .

Analogously, paths of the points of si+k+m−3 (ũ, ui) are concurrent lines with the
base (wi+m−1di+m−1 − wi+m−2di+m−2, wi+m−1 − wi+m−2).

We can not provide the rational counterpart of the general formula of The-
orem 2.2, but it is clear that G1 continuity contact and the coincidence of the
osculating planes remains valid, since these are geometric properties of curves that
are independent of the representation and are preserved during central projection.
However, it has to be examined whether the degree of continuity at the common
points increases or the type of continuity changes, since for Cr or Gr continuity
of rational curves it is not necessary for the corresponding curves in the pre-image
plane to be Cr or Gr. (Necessary and sufficient conditions can be found in [4].)

In the forthcoming paragraphs we examine the type and order of continuity at
points of contact. For this purpose consider the rational B-spline curve s (u) of
order k > 3, defined by the control points d0,d1, . . . ,dn, weights w0, w1, . . . , wn

and knots u0, u1, . . . , un+k. When modifying the knot ui of single multiplicity we
obtain the family of curves

s (u, ui) =
P(u,ui)
Q(u,ui)

, u ∈ [uk−1, un+1] , ui ∈ [ui−1, ui+1)

P (u, ui) =
n∑

l=0

wldlN
k
l (u, ui) ,

Q (u, ui) =
n∑

l=0

wlN
k
l (u, ui)

(5)
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We examine the relation between the elements of this family and the rational B-
spline curve of order k − 1

b (v) = R(v)
T (v) , v ∈ [ui−1, ui+1]

R (v) =
i−1∑

l=i−k+1

wldlN
k−1
l (v)

T (v) =
i−1∑

l=i−k+1

wlN
k−1
l (v)

(6)

defined by the same control points and weights, and by the knot values

vj =

{
uj , ifj < i,
uj+1, otherwise.

The rational curves s (u, ui) can be produced as the central projection of integral
B-spline curves

sw (u, ui) =

[
P (u, ui)
Q (u, ui)

]

determined by the control points
[

w0d0

w0

]
,

[
w1d1

w1

]
, . . . ,

[
wndn

wn

]
.

The pre-image of the rational B-spline curve b (v) is

bw (v) =

[
R (v)
T (v)

]

that can be deduced analogously.
The rth derivative of rational B-spline curves of expressions (5) and (6) can be

described by the formulae
dr

dur
s (u, ui) =

1

Q (u, ui)


 dr

dur
P (u, ui)−

r∑

j=1

(
r
j

)
dj

duj
Q (u, ui)

dr−j

dur−j
s (u, ui)


 ,

dr

dvr
b (v) =

1

T (v)


 dr

dvr
R (v)−

r∑

j=1

(
r
j

)
dj

dvj
T (v)

dr−j

dvr−j
b (v)




cf. e.g. [9]. On this basis we obtain

ṡ (u, ui) =
1

Q (u, ui)

(
Ṗ (u, ui)− Q̇ (u, ui) s (u, ui)

)
,

s̈ (u, ui) =
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1

Q (u, ui)

(
P̈ (u, ui)− 2Q̇ (u, ui) ṡ (u, ui)− Q̈ (u, ui) s (u, ui)

)
.

In the pre-image space Theorem 2.2 is valid by means of which for the derivatives
at u = ui, v = ui we gain

b (ui) = s (ui, ui) ,

ḃ (ui) =
k − 2

k − 1
ṡ (ui, ui) ,

b̈ (ui) =
1

Q (ui, ui)

(
k − 3

k − 1

(
P̈ (ui, ui)− Q̈ (ui, ui) s (ui, ui)

)
−

−2

(
k − 2

k − 1

)2

Q̇ (ui, ui) ṡ (ui, ui)

)
.

Thus for the curvatures κs (ui) of s (u, ui) at u = ui and κb (ui) of b (v) at v = ui

we obtain
κb (ui) =

(k − 1) (k − 3)

(k − 2)
2 κs (ui) .

Therefore b (v) is an envelope of the family of curves s (u, ui) but the condition of
second order geometric continuity contact does not fulfilled, since their curvatures
are different.

4. Shape control methods based on knots

Applying the results of Section 2 we developed constraint-based shape control
methods by modifying three consecutive knot values. These methods include shape
modification of cubic non-rational B-spline curves passing through a point with a
prescribed tangent direction, touching a line at a prescribed point of contact or
passing through a point at a prescribed parameter value [8]. These methods use
purely knot alteration. Here we will focus on shape control tools of NURBS curves
by simultaneous changing of knot values and weights. These results are based on
the authors previous work [3].

4.1. NURBS curve passing through a point

As we have mentioned, the modification of the weight wj of a NURBS curve
causes a perspective functional translation of points of the effected arcs, i.e. it
pulls/pushes points of the curve toward/away from the control point dj . If a given
point is on one of the line segments of the paths of this perspective change, one
can easily compute the new weight value such a way, that the new curve will pass
through the given point. This point can be almost anywhere in the convex hull,
but for k > 3 these concurrent line segments starting from dj do not sweep the
entire area of the triangle dj−1,dj ,dj+1 (see the gray area in Fig. 1.). If the given
point is close to the side of the control polygon, the problem can be solved only for
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Figure 1: Modifying the weight w3 and the knot u4 the NURBS curve passes
through a given point p which is outside the area accessible by modifying purely
w3.

changing two neighbouring weights. Now we give an algorithm solving this problem
with the change of one weight and one knot value.

Let a cubic NURBS curve s(u) and a point p in the convex hull be given. Let
the point p be in the triangle dj−1,dj ,dj+1. Consider the quadratic envelope b(v)
of this NURBS curve changing its knot value uj+1. This parabolic arc intersects all
the lines starting from dj in this triangle, hence suitably changing the weight wj

there will be a parameter value ṽ, for which b(ṽ) = p. Now if we modify the knot
value uj+1 of the cubic curve for uj+1 = ṽ, the cubic curve will also pass through
the point p. This type of shape modification is illustrated in Fig. 1.

In this subsection the quadratic envelope has been modified by a weight, where
the points of the curve moves along straight lines toward a control point. Similar
effect, however, can be achieved in terms of non-rational quadratic B-spline curves
by appropriate simultaneous modification of two knot values. More precisely, from
the definition of the B-spline functions and Consequence 2.1 one can easily prove
the following property:

Theorem 4.1. The points of the span si+1 of a non-rational quadratic B-spline
curve move along concurrent straight lines with centre di, if the knot values ui and
ui+3 are changed simultaneously toward (or away from) each other in such a way,
that

ui+1 − ui = ui+3 − ui+2

holds.

As we have seen above, the span si+1 can be written in the form

si+1(u) = di +N3
i−1(di−1 − di) +N3

i+1(di+1 − di).



364 6 th International Conference on Applied Informatics

Consider the path of the point si+1(ũ) and modify ui and ui+3. Applying the
assumption of the theorem we obtain

si+1(ũ, ui, ui+3) = di +
1

ui+2 − ui
(C1(di−1 − di) + C2(di+1 − di))

where C1and C2 are constants. This latter form is an equation of a straight line
segment passing through di.

The modification of these two knot values, of course, is not so effective, than
that of a weight, because the feasible area is greater for the latter case while the
number of changing spans is fewer (7 for the two knot values and 3 for the weight),
but we have to emphasize, that this theorem allows us to modify non-rational
B-spline curves similarly to NURBS curves.

4.2. Modification of two weights and a knot value of a NURBS
curve

Modifying two neighbouring weights wj , wj+1 of a NURBS curve the points of
the curve move along straight lines toward or away from the leg dj ,dj+1 of the
control polygon. This change is neither perspective nor parallel. This property can
be made more intuitive geometrically by modifying a knot value in addition. Thus
the points of a span of the curve will move along concurrent lines passing through
any given point of the line dj ,dj+1 except the inner point of the leg. As we have
mentioned in the preceding section, modifying a knot value uj of a cubic NURBS
curve the points of the spans sj−3, sj+2 will move along two families of concurrent
straight lines. Considering the span sj−3 and assuming that wj−4 6= wj−3 the
following result can be achieved: modifying the knot value uj the points of this
span move along concurrent lines the centre of which is on the line dj ,dj+1 and
its barycentric coordinates are

(
wj−4

wj−4 − wj−3
, 1− wj−4

wj−4 − wj−3

)
.

We can easily see, that one of its coordinates must be negative with the usual
assumption wj ≥ 0 for ∀j. Hence this centre cannot be on the leg dj ,dj+1 but on
the rest of the line. Fig. 2. shows a case of this type of modification.

5. Conclusion and further research

This paper has been devoted to the shape control of cubic B-spline and NURBS
curves. These curves can be uniquely defined by their degree, control points,
weights and knot vector and while the effect of the modification of the preced-
ing data has been widely published and used, the change of the knot vector has
just been studied in some recent papers of the authors. At the first sections some
theoretical results have been presented in terms of the paths of the points of the
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Figure 2: Modifying the knot value u7 the points of the span s4 moves along
concurrent straight lines the centre of which depends on w3 and w4 and can be
arbitrary chosen on the line of d3d4.

curve modifying one of its knot value and the existence of an envelope of the re-
sulted family of curves. Applying these results some shape control methods have
been presented in the last section for NURBS curves. Simultaneous change of
one or more weights and knot values has been presented, the result of which is a
NURBS curve passing through a given point or a geometrically simple perspective
shape modification.

One of the main stream of our further research will be the theoretical aspects
of knot modification for surfaces, which will hopefully generate some shape control
methods also for B-spline and NURBS surfaces.
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