
6 th International Conference on Applied Informatics

Eger, Hungary, January 27–31, 2004.

Development trends in refactoring and
measurement tools

István Juhásza, Gábor Gutab

Department of Information Technology, Institute of Informatics,
The University of Debrecen

apici@inf.unideb.hu
bgutag@delfin.unideb.hu

Abstract

In recent years refactoring and measurement tools have typically been
available for every popular development environment or composed an in-
tegral part of them. Refactoring tools seem to be widely accepted, while
developer communities are just getting into the habit of using metrics, and
the connection between these two has hardly been explored.

This paper tries to show the development trends of these tools and to
identify areas where future research is required. First, we summarise the
capabilities and limitations of the recent tools. We also have done some
investigation in default metrics values for Java. Then we will show some
known connection between refactoring and metrics anomalies. We then point
out how design metric values are affected by refactorings. Some other existing
factors which behave as indicators besides metrics will also be shown. Finally,
some further ideas will be presented about basic requirements for the new
generations of IDEs.

Categories and Subject Descriptors: D.1.5 [Programming Techniques]:
Object-oriented Programming; D.2.3 [Software Engineering]: Coding Tools
and Techniques - Object-oriented programming; D.2.6 [Software Engineer-
ing]: Programming Environments - Integrated environments; D.2.7 [Software
Engineering]: Distribution, Maintenance, and Enhancement - Restructuring;
D.2.8 [Software Engineering]: Metrics - Complexity measures, Product met-
rics

Key Words and Phrases: Measurement tools, software metrics, refactor-
ing tools, Java, Eclipse, Agile

347



348 6 th International Conference on Applied Informatics

1. Introduction

Several changes have been done in the last 10 years that have set up new require-
ments for our tools. Typical buzz-words related to these changes are: open-source,
agile methodologies, software components, but the exact relationship of these new
technologies and the requirements fall beyond the scope of the present article.
Furthermore, new languages have also appeared like Java and C#. The growing
number and size of class libraries and frameworks are also an important factor.
The standard class library of Java 1.4 is a good example, which was introduced
in early 2002, including 3395 classes and interfaces [14]. Fortunately, development
tools for object-oriented languages have evolved dynamically to fulfil these new
requirements. New IDEs serve also as integration platforms for development tools.
They have an advanced search and source-code navigation. Recently refactoring
and measurement tools are available or integral part of the Java IDEs and we think
that these tools will gain greater importance in the future.

In Agile methodologies the good quality of the internal structure of code is an
important issue, which is usually achieved by continuous refactorings. Refactoring
tools help to carry them out in a more error free manner and measurement tools
help to identify when and where refactorings are necessary.

Figure 1: Possible role of measurement in Agile methodologies

Our aim with this article is to summarise the existing results and trends as a
starting point for our future research activity.

2. Capabilities of recent tools

Naturally, we cannot compare the full scale of tools, so we have selected 4 tools
for both groups. We selected those tools for comparison which seem to provide
the most complete support for the concepts mentioned above. Groups consist of
1 open-source tool and 3 commercial ones. We have excluded those tools which



I. Juhász, G. Guta: Development trends in refactoring and measurement tools 349

can not be available for evaluation purposes. In the case of refactoring tools our
selection was based on computer journals’ reader and editor choices. (for example,
the Editors’ Choice Award 2003 of the 1st April issue of JavaWorld in the category
of Best IDE was given to IntelliJ IDEA 3.0 with Borland JBuilder 8.0, eclipse
2.1 being the other finalists.) In the case of metrics plug-ins we used IDEs plug-
in listings. Some of the selected tools have already had betas and preliminary
product information, but we have not found any conceptually new features. They
are perfections and completions of existing features or extensions of functionality
that have already been implemented by other tools on the market.

2.1. Refactoring tools

We have selected 3 IDEs and 1 stand-alone tool for comparison of refactoring
capabilities. The IDEs are the following: (i) Eclipse 2.1.2 the last stable release of
Eclipse platform; (ii) IntelliJ IDEA 3.0.5, which is just simply called “the refactoring
IDE” by its creators and (iii) Borland JBuilder X is also an impressively developing
IDE. (iv) RefactorIT 1.4.1 is tested in stand-alone mode. We have to mention that
this tool can be used as plug-in in NetBeans, JDeveloper, JBuilder and in other
environments. Surprisingly, NetBeans 3.5.1 has no built-in refactoring capabilities.
The tools which are not included in this article may be subject of future comparison.

A reference list can be found at www.refactoring.com. There are also some links
to refactoring-related sites, information about tools and much more interesting
material. According to the above-mentioned website most of the refactoring tools
are available for the Java language. The support of C# also seems promising.

During the evaluation of tools we have found that a more sophisticated classifi-
cation of the refectoring tools could be useful. We propose to introduce complexity
and concreteness dimensions for classification. Some refactoring can be decompos-
able into mini-refactoring steps. So under complexity we mean the number which
indicates the required number of mini-refactorings necessary for completing the
refactoring. By the concreteness dimension we consider how exactly refactoring
is specified. For example, ‘substitute algorithm’ is a refactoring with a low con-
creteness value, because it is not clear what should be replaced by what, while the
‘extract method’ can be considered to have a high value of concreteness. Tools
mainly support the same subset of refactorings. The supported refactorings have
high concreteness and low complexity values according to our classification.

Category Specified Supported
Composing Methods 9 50%
Moving Features Between Objects 8 1-2
Organizing Data 16 1-2
Simplifying Conditional Expressions 8 0
Making Method Calls Simpler 15 33%
Dealing with Generalisation 12 66%

Figure 2: Supported refactorings (approximate values)



350 6 th International Conference on Applied Informatics

Code fragments, where the manipulations are done through the reflection API,
can not be modified automatically. Some tools warn the user if a string which
contains the name of affected functions or classes is found. So handling dynamic
constructions seems problematic.
Tools with refactoring capabilities usually have other automatic code generation
features, like creating skeletons for overriding class methods, extending abstract
classes, etc. Extended code navigation functions are also common functions of
these tools.

2.2. Measurement tools

On the one hand, static design metrics seem to be the most popular theme of
research papers recently, so we try to explore that from the practical side. On
the other, these kinds of metrics can provide immediate help for developers in
coding. Purao Sandeep and Vijay Vaishnavi mention about 375 product metrics
in their article [11]. Unfortunately, there was only a small subset of these metrics
implemented by tools in a not comparable manner. (While in articles C&K metrics
[1] are considered a common reference, just 3 of the proposed 6 metrics are usually
collected by tools.) We think that another problem is that scientific papers do not
always pay enough attention to implementation questions. It is also commonly held
that there is a lack of well grounded mathematical models [3, 4]. Measurement tools
usually do not count on inherited complexity and size, because they just calculate
the class values, without adding the complexity of the parents class.

We have selected the following Eclipse plug-ins for comparison:
net.sourceforge.metrics 1.3.4, which is an open-source one; Team in a Box’s eclipse
metrics 1.3.0, which is a smaller one and Instantiation’s CodePro Studio 2.3.1,
which has the most of functionality. We also tried out Aqris RefactorIT 1.4.1, only
focusing on its measurement capabilities. There are several other commercial and
open-source tools.

Code audit capability is an interesting feature of some tools, it make some
syntactical check, which helps to identify dangerous coding constructions and code
fragments which do not satisfy the pre-defined coding conventions. Usually, they
do not just warn but also propose corrective actions (some of the corrective actions
are refactorings!). We think that in the near future metrics could be used in a
similar way.

Measurement tools have different approaches: RefactorIT just measure and
export the measured values, other tools just warn if some values are not within
safe-ranges. Collected metrics vary from tools to tools, even if those collect the
same subset of metrics. For instance, if we examine the most simple metrics like
lines of code, we can see that some tools count all the lines which end with a new
line character, some only count the not blank lines, while some others just count
the not comment lines.



I. Juhász, G. Guta: Development trends in refactoring and measurement tools 351

Category Metrics
Basic structured Lines of Code, Commented LOC, Cyclomatic Complexity,

Number of Parameters, Block Depth
Basic OO Number of Methods, Number of Fields, WMC, Number of

Types, Number of Children
Inheritance Number of Children, Depth of Inheritance tree
Dependency
(Martin metrics)

Afferent Couplings, Efferent C., Instability, Abstractness,
Distance from the Main Sequence

Other Lack of Cohesion in Methods, Response for Class, Number
of Constructors, Number of Characters, Number of Semi-
colons, Executable Statements, Number of Package, Cyclic
dependency, etc.

Figure 3: Superset of supported metrics by the examined tools

Category Instantiation Team in a Box Aqris sourceforge.net
CodePro Studio eclipse metrics RefactorIT metrics

Basic structured all except CLOC except except CLOC
Block Depth

Basic OO all partially all all
Inheritance all none all all
Dependency all Efferent Coupling all all
Other partially partially partially partially
Range check yes yes no yes
HTML yes yes yes no
XML yes no no yes

Figure 4: Properties of tools

3. Common Java values

A typical practical question is: what are the ideal common or threshold values
for a specified environment. Articles usually leave this question open, mentioning
that these values depend on several parameters and suggest doing a calibration
on similar projects. Although the above statements are valid, there are common
average values which can be used as a starting point for a given language. Lorenz
and Kidd present common values for C++ and Smalltalk in their book [9]. In our
experience Java values should be somewhere between Smalltalk and C++ values.
Unfortunately, we have not found any well usable reference measurement, which
can be reproduced. Naturally, there are some articles similar to Xiao’s [15] work,
but they are based on a limited number of projects and metrics. Some others,
however, measured propertial source code with propertial tools.

So we have two options: (i) There are default threshold values found in the
measurement tools, which can be compared and evaluated; or we can (ii) mea-
sure some open-source project with open-source tools. We use eclipse 2.1.2 and



352 6 th International Conference on Applied Informatics

net.sourceforge.metrics 1.3.4 for our measurement. As it is an open source tool,
any question in connection with the implementation can easily be examined.

3.1. Default threshold values in the tools

The first idea mentioned above does not really work because of the divergence
of default values and types of metrics. So we only have the other alternative left:
we have to measure the average values. Below we include a short comparison of
some default values of two tools, which we have found interesting. Of the tested
tools, three do not include many more comparable values, while the fourth tool
does not have default value settings.

net.sourceforge.metrics com.teaminabox.metics
Lines of Code 50 15
McCabe’s Cyclomatic Complexity 10 4
Nested Block Depth 5 4
Number of Parameters 5 4

Figure 5: Default threshold values

3.2. Measured values

We also found unexpected difficulties during the measurement. There is a lack of
standard metrics sets or guidelines, i.e. how we can set up a reference measurement
for an unknown goal. We selected some applications by the following criteria: the
selected applications should be an open-source software in stable or mature release
with a large user community.

It seems obvious that different types of applications have different ”good” values.
For the first step let us take the following categorisation: desktop application, server
application and library. A more sophisticated categorisation is also necessary in
this question. Theoretically, appli cations and libraries have different coupling and
cohesion parameters, so this seems to be a good dimension. The basic problem
is that some applications have plug-in interfaces which can be considered a kind
of class library. In the case of applications we have found in the literature that
GUI based applications significantly differ from no-GUI applications [8]. Another
influencing factor is that the measured values can be heavily affected by the number
and type of the used libraries and framework. We suggest the exclusion of auto-
generated code fragments.



I. Juhász, G. Guta: Development trends in refactoring and measurement tools 353

jgraph jgraph jgraphpad jedit core jedit metrics
3.0 3.1 3.0 4.1 4.1 1.3.4

Total Lines of Code 5929 5950 16665 33581 52142 7307
Average of Lines of Code
(per method)

6.27 6.30 8.91 12.54 12.11 5.26

Average of Lines of Code
(per class)

98.82 99.17 54.11 79.01 92.78 37.66

Total Number of
Classes

60 60 308 425 562 194

Average of Number of
Classes (per package
fragment)

12 12 28.00 28.33 28.10 12.93

Average of Number of
Methods (per type)

13.95 13.93 5.61 5.30 6.68 6.83

Average of Number of
Attributes (per type)

4.83 4.83 1.98 3.14 3.21 2.21

Average of Weighted
methods (per type)

40.15 40.25 13.94 19.88 29.43 13.60

Average of Number of
Overridden Methods
(per type)

1.43 1.43 0.37 0.72 0.72 0.54

Average of Number of
Children (per type)

0.17 0.17 0.96 0.22 0.29 0.49

Average of Depth of
Inheritance Tree (per
type)

1.97 1.97 3.20 2.54 2.39 2.11

Maximum of Depth of
Inheritance Tree (per
type)

6 6 6 8 8 6

Average of Nested Block
Depth (per method)

1.48 1.48 1.50 1.66 1.64 1.51

Average of Number
of Parameters (per
method)

1.08 1.08 1.04 1.11 1.06 0.79

Average of McCabe
Cyclomatic Complexity
(per method)

2.55 2.56 2.30 3.16 3.84 1.90

Figure 6: Averages of some projects

3.3. Affected metrics

Refactorings usually just slightly change the averages values, and in an optimal
case they cancel the exceptionally high values. The extent of change of average
values also depends on what kind of refactorings are applied. We have found
an experimental report which confirmed our experiences, even though the writers
declared their results preliminary [13].

4. The connection between the metrics and the
refactorings

Quality issues are classified in two main categories: external and internal [9].
The direct connection between the external quality and metrics is rather fuzzy
[3]. We think it is more advisable to handle product metrics as properties of the
internal quality. Internal quality mainly affects maintainability and readability of
code. Much of the literature agree that maintenance can be quite expensive or even



354 6 th International Conference on Applied Informatics

impossible in a not well designed application, so internal quality can be considered
to be an important factor [10]. That is why we believe that metrics will play a
more and more important role in internal quality improvements.

The basic question of refactoring is when we have to apply refactorings. What
is the economical balance of clarity of internal structure and the effort paid for it?
We think that it would be more economical only to select the code fragments we
want to modify or attach a new module for refactoring. In this way we can save
development effort.

A researcher’s dream is a fully automated metric based refactoring process.
This means that refactoring tools automatically identify source code anomalies
and apply the refactoring. Unfortunately, this seems impossible. It always needs
human interaction because of irregular situations. That is why the ultimate aim is
to create a system that helps the developer as much as possible.

4.1. Results of recent research

Martin Fowler defined 22 “bad smells” in his book and he declared that iden-
tifying of refactorings needs “human intuition” [5]. The examples of refactorings
help to understand the process of refactoring, but they are too small to give an
impression of which real situation refactorings need to be applied in (and often
he uses very similar examples both for forward and reverse transformations). In
recent research, results shows that metrics can help to identify these situations.

We have found 3 main approaches. One of them is hierarchy restructuring,
based on similarities of methods. It simply works the following way: It flattens
the classes, then removes the hierarchical relations. Finally, it rebuilds the hole
hierarchy based on similarities [6]. The second idea is that we can identify which
methods and variables need to move to other classes, based on coupling [12]. As the
third approach, we found the theory of semantic metrics to be the most interesting
concept. The idea is that we can make an ontology from the design documentation
and we can measure the connection between our semantic model and the class
structure [2].

We have to mention that metrics is not the only way to help to identify the
necessary refactorings, there are some others, for example, ‘finding invariants’ [7].

5. Summary

We have presented a brief overview of refactoring and measurement tools for
Java and shown some connection between these tools and Java specific information
that can help in further application and research. We found that the tendency of
recent years shows that more and more refactorings are covered. Unfortunately,
the situation with metrics is rather fuzzy, there are several different tools, with
divergent properties. We think reverse engineering tools will be included in the
IDEs of the future to help a better understanding and an ability for large scale
restructuring over source code through visualisation.



I. Juhász, G. Guta: Development trends in refactoring and measurement tools 355

For further development in software measurement, we need a much larger
amount of comparable data and more interoperable tools. In order to achieve
this, measurement tools need some standardisation.

We will make available our measurements in XML format of net.sourceforge.met-
rics plug-in and the links to web pages of related tools on the following site:
http://inf.unideb.hu/metrics

6. Acknowledgment

One of the authors, Gábor Guta, would like to thank ‘AKTION Österreich-
Ungarn’ foundation for providing a scholarship at the Technical University of Vi-
enna that made it possible to complete and enhance this article.

References
[1] Chidamber, S., Kemerer, C.: A metrics suite for object oriented design, in IEEE

Transactions on Software Engineering, Vol. 20, Num. 6 (1994), 476-493
[2] Etzkorn, L., Delugach, H.: Towards a Semantic Metrics Suite for Object-orinted

Design, in Proc. International Software Metrics Symposium 2000, 71-80
[3] Fenton, E. N., Shari Lawrence Pfleenger: Software Metrics: A rigorous approach,

Internation Thomson Publishing, 1996
[4] Fenton, N.: Software Measurement: A Necessary Scientific Basis, in IEEE Transac-

tions on Software Engineering, Vol. 20, Num. 3, (1994), 199-206
[5] Fowler, M.: Refactoring: Improving the design of existing code, Addison-Wesley, 1999
[6] Ivan M.: Automatic Inheritance Hierarchy Restructuring and Method Refactoring, in

Proc. Conference on Object Oriented Programming Systems Languages and Applica-
tions 1996, 235-250

[7] Kataoka, Y., Ernst, D. M., Griswold G. W., Notkin, D.: Automated Support for
Program Refactoring using Invariants, in Proc. IEEE International Conference on
Software Maintenance 2001, 736-743

[8] Lorenz, M., Kidd, J.: Object-oriented Software Metrics: A practical Guide, Prentice-
Hall, 1994

[9] Meyer, B.: Object-oriented software construction, 2 nd Edition, Prentice-Hall, 1997
[10] Pigoski, Thomas M.: Practical software maintenance: best practices for managing

your software investment, John Wiley Computer Publishing, 1997
[11] Purao, S., Vaishnavi, V.: Product Metrics for Object-Oriented Systems, in ACM

Computing Survey, Vol. 35, Num. 2,(2003), 191-221
[12] Simon, F., Steinbrückner, F., Lewerentz, C.: Metrics based refactoring, in Proc.

European Confonference on Software Maintenance and Reengineering 2001, 30-38
[13] Stroulia, E., Kapoor, R.: Metrics of Refactoring-based Development: An Expe-

rience Report http:/www.cs.ualberta.ca/∼stroulia/Papers/oois2001.pdf, last visited:
2004.1.12.

[14] Szyperski, C.: Component Software, Beyond Object-Oriented Programming, 2nd Edi-
tion, Addison-Wesley, 2002



356 6 th International Conference on Applied Informatics

[15] Xiao, Q.: Object-oriented Metrics Analysis on Java Software Projects
http://ww.isse.gmu.edu/faculty/ofut/classes/763/studpapers/xiao_q.pdf, last visited:
2004.1.12.

Postal address

István Juhász
Gábor Guta
Department of Information Technology
Institute of Informatics
The University of Debrecen
1, Egyetem tér, 4032 Debrecen
Hungary


