
6 th International Conference on Applied Informatics
Eger, Hungary, January 27–31, 2004.

Calculating Metrics from Large
C++ Programs

István Siket, Rudolf Ferenc

Department of Software Engineering, University of Szeged, Hungary
e-mail: {siket|ferenc}@inf.u-szeged.hu

Abstract
In this work we present a new method called compiler wrapping for ex-

tracting information from the source code of large software systems written
in the C++ language. This new method can be used without having to mod-
ify the analyzed source code in any way. With the extracted information we
can calculate different object oriented metrics and characterize the analyzed
system. For source code analysis and metrics calculation we employed the
Columbus reverse engineering framework. To demonstrate the operability of
our new approach we tested it on the open source internet suite Mozilla and
found it very effctive in obtaining the desired metrics.

Categories and Subject Descriptors: Applied Informatics

Key Words and Phrases: Fact extraction, reverse engineering, compiler
wrapping, schema, C, C++, Columbus, CAN, CANPP

1. Introduction

A critical issue in large-scale software development and maintenance is the
rapidly growing size and complexity of software systems. Due to this rapid growth
it is difficult to measure the various parameters of the source code of large pro-
grams. Applying different program metrics can help us characterize object oriented
programs more precisely, which means that we can express certain properties of the
program’s source code.

However, obtaining metrics in practice is not so easy because, if we want to
calculate them for a large program, we first have to collect the necessary data from
the source. We refer to this data as facts about the source code. By fact we mean
any information that describes different properties of the subject system. One fact
might be, for instance, the size of the code. Another fact might be whether a class
has base classes. Actually any information that helps us describe source code in
some way is called a fact here. Fact extraction is a process which defines different

319



320 6 th International Conference on Applied Informatics

steps that describe the way how facts about the source code can be obtained. These
steps include the aquisition of project/configuration information, the analysis of the
source files with analyzer tools, the creation of some kind of representations of the
extracted facts, the merging of these representations and different processing tasks
performed on this merged representation to enable the actual use of the collected
information (like calculating metrics).

Basically, a task similar to traditional compilation must be done. The source
files must be analyzed each in turn and the desired properties of the code must
be collected together. We used the Columbus framework [2] to analyze the source
files and collect the facts. But real-world systems may contain several thousands of
source files so doing this manually is not really feasible. Our aim was to develop a
method which figures out which files have to be analyzed and how they relate
to each other. In most cases this information is stored in so-called makefiles.
Unfortunately, most makefiles are so complex that it is not feasible to analyze
them (because they contain not only the source files and their parameters but a
lot of other information needed for compilation). During compilation command
line instructions are created according to these makefiles which coordinate the
compilation steps. Our idea was to exploit this information by “wrapping” the
compiler. This means that when the compiler is run, our program will start instead
of it. This way we can get all necessary information about the system and the
analysis can be done automatically.

In the next section we describe the Columbus framework in detail. In Section
3 we explain what “wrapping” means, how it works and we also mention some
difficulties that we encountered during this development and show how we overcame
them. Finally, in Section 4 we show how we applied this method to the Mozilla
internet suite [4, 5, 6]. We present only several metrics (without any conclusion)
which characterize Mozilla and help us to get a picture about its proportions.

2. The Columbus Framework

Columbus [2] is a reverse engineering framework that has been developed in
coopera- tion between the University of Szeged, the Nokia Research Center and
FrontEndART [3]. The main motivation behind developing the Columbus frame-
work was to create a toolset which supports fact extraction and provides a common
interface for other reverse engineering tasks as well.

The main tool is called Columbus REE (Reverse Engineering Environment),
which is the graphical user interface shell of the framework. All C++ specific tasks
are performed by different plug-in modules of the REE. Some of these plug-in
modules are present as basic parts, but the REE can be extended to support other
languages and reverse engineering tasks as well. The framework contains several
command line tools, which actually do the C++ specific tasks like the analysis of
the source code and the processing of the results. In the following we will briefly
present what they are and do.

CANPP (C/C++ ANalyzer-PreProcessor) is a command line program for ana-



I. Siket, R. Ferenc: Calculating Metrics from Large C++ Programs 321

lyzing C/C++ preprocessing-related language constructs and for preprocessing the
code. The input is a C/C++ source file with various settings (like include paths
and macro definitions), and the outputs are the preprocessed file and the built-up
instance of the Columbus Schema for C++ Preprocessing [7] of the source file. By
schema, we mean a description of the form of the data, in terms of a set of entities
with attributes and rela- tionships. A schema instance is an embodiment of the
schema which models a concrete software system (or part of it).

CAN (C++ ANalyzer) is a command line program for analyzing C++ code.
The input of CAN is one complete compilation unit (a preprocessed source file)
and the output is the built-up instance of the Columbus Schema for C++ [1] of the
analyzed unit. Besides ANSI C++, CAN supports the Microsoft dialect used in
Visual C++, the Borland dialect used in C++ Builder and the GCC dialect used
in g++.

CANLink (CAN Linker) is a schema instance linker tool. Similar to compiler
linkers, it merges the instances of the Columbus schemas into a larger instance.
So C++ entities that logically belong together (e.g. libraries and executables) are
grouped into one in- stance. These merged instances have the same format as the
original instances, so they can be further merged into one single schema instance
to represent the software system as a whole.

CANFilter (CAN Filter) is a GUI program that makes the filtering of the
(linked) schema instances possible visually. The filtered instances have the same
format as the original instances.

CAN2*. With the help of these command line tools the (filtered) schema in-
stances built from the extracted facts can be further processed. Some of these pro-
cedures apply transformations on the instances to convert them into other formats
in order to promote tool interoperability, while others do different computations
on the instances such as calculating metrics, recognizing design patterns and code
auditing. In this paper we used the CAN2Metrics tool for calculating the necessary
metrics.

CANGccWrapper toolset. The GCC compiler-wrapper toolset supports our
novel compiler wrapping technique as described in the next section.

3. Compiler Wrapping

The source code of a software system is usually logically split into several files
and these files are arranged into folders and subfolders. Furthermore, different
preprocessing configurations can apply to them. In this section we deal with the
case when the information on how these files are related to each other and what
setting apply to them are stored in makefiles (used by the make tool). An important
issue that we addressed was to not change anything in the subject system (not even
the makefiles). The technique described in the following successfully deals with this
issue. It was tested with the GCC compiler in Linux environment, but the idea is
applicable as well to other compilers and operating systems.

The make tool and the makefiles represent a powerful pair for configuring and



322 6 th International Conference on Applied Informatics

building software systems. Makefiles may contain not only the references to files to
be compiled and their settings but may also contain various commands like invoking
external tools. A typical example is when the source file to be compiled is generated
on-the-fly from IDL descriptions by another tool. These powerful possibilities are
a headache for reverse engineers because every action in the makefile must be
somehow simulated in the reverse engineering tool. This may be extremely hard
or even impossible in some circumstances.

We approached this problem from the other end and solved it by “wrapping” the
compiler. This means that we temporarily hide the original compiler by a wrapper
toolset. This toolset consists of several scripts and a program called CANGc-
cWrapper. Among the scripts there is a key one called CANGccWrap, which is
responsible for hiding the original compiler by changing the PATH environment
variable. Actually, all the user has to do is to run this script. The script inserts
the path of the folder in which the other scripts can be found to the beginning of
the PATH environment variable. The names of the other scripts correspond to the
different executable files of the compiler (for instance gcc, ar and ld). If we want to
execute a program, the operating system searches for it in the folders given in the
PATH variable in the same order. This means if the original compiler should be
invoked, our wrapper script will start instead of it because it appears first in the
PATH variable. If we do not want to use the wrapper anymore it can be simply
switched off. The other scripts are quite similar to each other, the only difference
being that they “hide” different tools of the compiler.

The scripts first execute the original compiler tool (for instance g++) with the
same parameters and in the same environment so the output remains the same.
Hence, we do not notice that not the original compiler was called originally. The
scripts also examine whether the original program terminated normally or not
and they terminate with the same value. This is very important because complex
systems usually run different kinds of tests before the compilation, which determine
the compiler capabilities and environment settings. They usually do this by trying
to compile small programs containing the issues needed to be tested and examine
the termination of the compiler. If the scripts do not take into account the results
of the compiler and always terminate normally even when the compilation failed,
say, the compilation will be misled and this will probably cause problems later
during compilation.

After calling the original compiler the scripts also call the program CANGc-
cWrapper, which will in turn call the corresponding analyzer tool (CANPP, CAN
or CANLink). Since the parameters of the CANPP/CAN/CANLink tools are not
the same as the compiler’s, they cannot be easily called directly from the scripts.
Another problem is that we use different tools for different tasks (for instance
CANPP can be used only for preprocessing related issues), while gcc can be used
for different purposes like preprocessing, compiling and linking depending on with
which parameters it is invoked. So we have to examine the parameters to choose
the tool(s) which must be called (for instance “gcc -E . . . ” means “do not compile
the file just preprocess it”). The CANGccWrapper program deals with such prob-



I. Siket, R. Ferenc: Calculating Metrics from Large C++ Programs 323

lems. The scripts call CANGccWrapper with the same parameters as the compiler
and CANGccWrapper will call the required analyzer tools.

CANGccWrapper first examines which tool of the compiler was called because
the parameters will be further examined according to this. In different cases it
focuses on different parameters, we will only describe its working in the case of
gcc because this is the most complex (it can be used for preprocessing, compiling
and linking as well). For instance, if gcc is used for both compiling and linking
it first preprocesses the files, compiles them and finally links them together, so
CANGccWrapper has to simulate the same steps. Since the parameters can be
grouped according to which tool uses them, CANGccWrapper has to group them
similarly as well. We examine only the most frequently used parameters for all the
three tools but it can be easily extended. CANGccWrapper collects mainly the
“define” and “include” parameters for CANPP, “libraries” for CANLink and several
others for CAN. Where necessary, CANGccWrapper modifies the relative directory
paths to full paths to avoid potential ambiguities.

Now we will describe how our fact extraction process works in practice when
using the CANGccWrapper toolset. It consists of five consecutive steps as can be
seen in Figure 1.

Figure 1: The Columbus fact extraction process

Step 1: Acquiring project/configuration information
In this paper we use our wrapper technology for fact extraction and acquiring
project/configuration information is done from makefiles. This is implicitly handled
by our wrapper toolset because it integrates itself into the usual build process as
explained earlier.

Step 2: Analysis of the source code - creation of schema in-
stances
In this step the input files are analyzed one at a time and the schema instances
are created. First, CANPP preprocesses the input files and then CAN analyzes



324 6 th International Conference on Applied Informatics

the preprocessed files and extracts C++ language related information. Both tools
create the corresponding schema instances and save them to appropriate files. The
CANPP/CAN tools are invoked through the CANGccWrapper program when the
source files are compiled (as described previously). One of the issues which we had
to deal in this step was that the outputs of CANPP (the preprocessed file and the
corresponding schema instance) are not present in the makefiles of the real build
process. The first one is needed immediately by CAN, so there is no problem in
handing it over, but the schema instances are needed later in step 3 when they
must be linked together. In that step only the compiled (object) and linked file
names are available in the parameters and we had to find the files containing the
associated schema instances. We overcame this problem by using the same file
name for the outputs but with different extensions. These files are always stored
next to the original output (in the same directory) so that they can be found in
step 3.

CANGccWrapper first calls CANPP with the appropriate parameters as we
mentioned earlier. The input of CANPP is a source file and the needed header files.
CANPP analyzes and preprocesses it and saves the extracted schema instance to a
file with the extension “.psi” and the preprocessed file to a file with the extension “.i”.
Afterwards, CANGccWrapper invokes CAN with the appropriate parameters and
input/output files. CAN uses the preprocessed file created by CANPP, analyzes it
and saves the extracted schema instance to a file with the extension “.csi”.

Step 3: Linking of schema instances
Similar to a real compiler linker that links object files, CANLink links schema
instances (which logically belong together) into a merged schema instance that
represents a logical unit (subproject) of the system. These merged schema instances
can of course be further merged into a single one to represent the whole software
system at the same time.

We have two kinds of schema instances as inputs. These are linked in parallel
with the linking of the regular object files. CANGccWrapper invokes CANLink
to link these schema instances which correspond to the object files linked at this
step. As a result there will be only several files which contain all the extracted
information that belong to the different subsystems of the subject system. The
function of the wrapper ends here in step 3, where all the extracted information is
available for further processing.

The following two steps have no equivalents in the traditional compilation
process but they help us in handling the extracted facts (the number of facts can
be very large as we shall see later) and putting them in a form which is the most
suitable for us.

Step 4: Filtering the schema instances
Since the schema instances can be quite large and can contain an unmanageable
amount of information or we may be simply only interested in certain properties of



I. Siket, R. Ferenc: Calculating Metrics from Large C++ Programs 325

the system, there is a possibility of filtering the extracted schema instances. Then
we can obtain the desired information. This can be done in the step here by using
the CANFilter tool. This step is not compulsory; we may use the linked schema
instances as they are without any filtering as well.

Step 5: Processing the schema instances
The extracted information can be used for many purposes and to promote tool
interoperability we can transform the linked/filtered schema instances into any
supported format (like GXL and Famix). There are several tools which can do this
like CAN2Gxl and CAN2Famix. Apart from simply converting the facts into other
formats, more sophisticated processing can also be done. In this work we used the
CAN2Metrics tool to obtain different metrics.

3.1. Encountered Difficulties

Our approach is still not perfect because we found some configuring examples
in makefiles that seem quite “sneaky”. For instance, objects may be moved to
another directory before linking, so our wrapper could not find the files containing
the associated schema instances in step 3 (it searches them next to the original
location of the object files). Another example (in Mozilla) was that the build
process created file links to the object files and in the linking step it used these
links instead of the original file names.

One solution could also be to wrap the cp (file copy), mv (file move) and ln (file
link) commands in a similar way as the compiler, but sometimes this is insufficient.
For instance, Mozilla created the file links with its own program (compiled on-the-
fly) and wrapping the ln tool does not help. In this case we examined all the files
and if a file link is found instead of a real file we know that the file containing the
corresponding schema instance is next to the file the link points to. It is just one
solution and it is obvious that it cannot be used in the case of cp and mv.

Using special characters (like spaces, quotes and backslashes) in the parameter
list can cause problems as well. The Linux shell resolves these special characters
and the wrapper scripts and the CANGccWrapper tool get the “modified” parame-
ters which are of course correct but sometimes they cannot be simply sent to the
wrapped compiler without modification. CANGccWrapper has to deal with these
special characters as well.

4. Experiment

We tested our wrapping approach with the open source real-world system
Mozilla [4, 5, 6] successfully.

First of all, let us take a look at the compilation time (with and without wrap-
ping). This can be very important in the case of large projects such as Mozilla. We
measured the compilation time of Mozilla version 1.6 on a Linux platform (kernel
2.4.22) on a computer with a 3GHz Pentium-4 processor with 1 GB RAM. The



326 6 th International Conference on Applied Informatics

original compilation took 27 minutes while with wrapping enabled it took 3 hours
and 10 minutes (original compilation included). This consisted of three parts: the
compilation itself with wrapper enabled took 2 hours and 22 minutes (without
filtering), linking all schema instances into a single one took 11 minutes and calcu-
lating the metrics from the final schema instance took about 37 minutes (without
filtering). Of course, the last two steps are not obligatory. We treated all the
subsystems of Mozilla as a whole and calculated several metrics. We provide two
examples in the following.
Example 1: System level metrics. In Figure 2 we present some system level
metrics that describe some basic properties of the whole system. The metrics and
their definitions can be seen below the table.

AHF NCL TLOC TNM TNA WMC∗

0.42 9701 1486986 107953 79836 24.6

AHF. (Attribute Hiding Factor). The average of the invisibilities of each at-
tribute defined in each class. The invisibility of an attribute is the percentage
of the total classes from which this attribute is not visible [8].
NCL. Number of classes [9].
TLOC. Total number of (non-empty) lines of code in the system [9].
TNM. Total number of methods in the system [9].
TNA. Total number of attributes in the system [9].
WMC. (Weighted Methods per Class). Weight: McCabe cyclomatic complex-
ity [8, 10].
WMC∗. We calculated the average of WMCs for all the classes.

Figure 2: Some system level metrics that were calculated

Example 2: Class level metrics. With these metrics the classes can be exam-
ined one at a time and they can be also used to calculate different statistics that
describe the whole system. In our example (see Figure 3) we show a statistic using
the metric DIT. We examined the classes one by one and classified them according
to its DIT value.

Depth 0 1 2 3 4 5 6 7 8 9 10
Number of classes 1705 3562 2217 1186 481 190 139 133 75 11 2

DIT (Depth of Inheritance Tree). The length of the longest path from the
class to the root in the inheritance hierarchy [10].

Figure 3: Some system level metrics



I. Siket, R. Ferenc: Calculating Metrics from Large C++ Programs 327

5. Summary

In this paper we calculated various metrics from the source code of the well-
known open source web and e-mail suite called Mozilla. To obtain the required
metrics we used our Columbus framework which has been further developed re-
cently with a novel, so-called compiler wrapping technology (see Section 3) giv-
ing us the possibility of automatically analyzing and extracting information from
practically any software system that compiles with GCC on the Linux platform.
Moreover, we can do this without modifying any of the source code or makefiles.
We also briefly introduced our fact extraction process briefly to demonstrate what
logic drives the different tools of the Columbus framework and what steps need to
be taken to get the necessary facts for calculating the metrics. Using the extracted
facts we calculated different metrics to characterize the Mozilla system.

In the future we plan to gather metrics also from the previous versions of
Mozilla to study how the software evolved and how their representative parame-
ters changed. We also intend to build and fill a large database containing metrics
about different open source projects (like OpenOffice, for instance) and to make
this publicly available for researchers.

References

[1] R. Ferenc and Á. Beszédes. Data Exchange with the Columbus Schema for C++. In
Proceedings of the 6th European Conference on Software Maintenance and Reengi-
neering (CSMR 2002), pages 59-66. IEEE Computer Society, Mar. 2002.

[2] R. Ferenc, Á. Beszédes, M. Tarkiainen, and T. Gyimťothy. Columbus - Reverse Engi-
neering Tool and Schema for C++. In Proceedings of the 18th International Confer-
ence on Software Maintenance (ICSM 2002), pages 172-181. IEEE Computer Society,
Oct. 2002.

[3] Homepage of FrontEndART Software Ltd. http://www.frontendart.com.
[4] M. W. Godfrey and E. H. S. Lee. Secrets from the monster: Extracting mozilla’s

software architecture. In Proceedings of the 2nd International Symposium on Con-
structing Software Engineering Tools (CoSET 2000), June 2000.

[5] The Mozilla Homepage. http://www.mozilla.org.
[6] C. R. Reis and R. P. de Mattos Fortes. An overview of the software engineering

process and tools in the mozilla project. In Proceedings of the Workshop on Open
Source Software Development, pages 155-175, Feb. 2002.

[7] L. Vidács, Á. Beszédes, and F. Rudolf. Columbus Schema for C/C++ Preprocess-
ing. In Proceedings of the 8th European Conference on Software Maintenance and
Reengineering (CSMR 2004), to appear. IEEE Computer Society, Mar. 2004.

[8] J. R. Abounader, D. A. Lamb. Data Model for Object-Oriented Design Metrics.
Queen’s University, Kingston, ON. 1997.

[9] F. Fioravanti, P. Nesi. A method and tool for assessing object-oriented projects and
metrics management. In The Journal of Systems and Software, North-Holland, Else-
vier Science Inc. Press, New York, USA, Vol.45, 2001.



328 6 th International Conference on Applied Informatics

[10] V. Laing, C. Coleman. Principal Components of Orthogonal Object-Oriented Met-
rics. White Paper Analyzing Results of NASA Object-Oriented Data (323-08-14),
October 2001.

Postal address

István Siket
Department of Software Engineering
University of Szeged
H-6720 Szeged, Árpád tér 2, Hungary


