
6 th International Conference on Applied Informatics
Eger, Hungary, January 27–31, 2004.

Teaching technologies at the Institute of
Informatics of the University of Debrecen

István Juhász, Imre Fazekas

Department of Information Technologies, University of Debrecen
e-mail: pici@inf.unideb.hu, ifazekas@inf.unideb.hu

Abstract

Due to the integration of the computer science in our life, computers are
used probabily in every office and home. Creators of software have to be up-
to-date in new technologies and methodologies in computer science. The main
goal is to create IT professionals with ready-to-apply knowledge. The courses
introduce the basic concepts of information systems, programming- and meta-
models, help to get familiar with design methods, abstract methodologies and
so on. IT students acquire both practical and theoretical knowledge. The
top of this area is the course named “tehnologies of system developing” con-
tains abstract methods, metamodels, and the practice of the UML, design
patterns, RUP and extreme programming.

Besides completing the mandatory classes, students are required to choose
section we have. The amount of the classes one most complete from a section
is determined by the major of the student. Most curses are manadtory. Thus,
every student has to complete this courses on technologies.

Keywords: Courses, object oriented, Java, UML, RUP, XP, Design Pat-
tern, Refactoring, Localisation

1. Introduction

The following graduate programs is ensured at the Institute of Informatics in
the University of Debrecen:

• full-time study: M.Sc. Software Engineering and Mathematics, B.Sc. Soft-
ware Engineering and Mathematics, M.Sc. Information Technology Teacher

• evening study: B.Sc. Software Engineering and Mathematics

• correspondence study: M.Sc. Information Technology Teacher

311



312 6 th International Conference on Applied Informatics

The IT-education sector has the responsibility in this field to train highly qual-
ified professionals who can keep up with the progress and learn to use the newest
technologies available in order to fulfill the existing and emerging user needs, re-
quirements.

1.1. Education

At the University of Debrecen the courses of the IT education are organized ac-
cording to the following concepts: every graduate program has mandatory classes
required for the degree. The knowledge acquired in these fundamental classes serve
as a basis for the other classes facilitating the specialization of students. These
classes are organized into course sections, where each section except one contains
optionally mandatory classes (Section A - Artificial Intelligence, B - Database Sys-
tems, C - Networking, D - Computer graphics, E - Image Processing, F - Applied
Mathematics, K - Computer Algebra and Cryptography, KTK - Economics). The
expression “optionally mandatory” means that students are required to take a min-
imum amount of courses from each of these course sections. The major of the
student in credit points determines the amount of the classes one must complete
from a section, but the actual classes taken depend on the students’ decision. The
courses of IT are the essence of teaching IT professionals and programmers, so it
can be found in every sections.

2. Courses

2.1. Database Systems

The “Database Systems” introduces the basic theoretical concepts of relational
and OO databases throughout lectures, while focusing on practical knowledge on
relational database systems during the computer labor activities. In the labor
activities students study relational database design, normalization and SQL, the
standard query language for relational databases by using a concrete relational
database management system. We teach all of parts of SQL:

• the Data Definition Language (DDL) to create and drop tables and views,

• the Data Manipulation Language (DML) to insert, delete, update rows stored
in database tables,

• the query language (SELECT statement) to query the stored data,

• the Data Control Language (DCL) to grant and revoke user privileges, and
to control (commit, rollback) database transactions.

However, during the term the main goal is to drill students in queries. Students
become skilled in performing table-joins, using many kinds of clauses and functions
in statements dependably.



I. Juhász, I. Fazekas: Teaching technologies at the Institute of Informatics of the . . . 313

2.2. Programming I.-II.

The students get familiar with the basics concepts and terms of programming,
the functional, procedural, logical and object-oriented programming paradigms.
The learn how to think using an abstract approach in the programming, how to
use the toolboxes of the programming languages like Java, C, Ada, Eiffel, CLOS.
In the labor activities students write codes, application fragments, so they learn
the theoretical design in practice.

2.3. Technologies of Software Localisation

Software Localisation means adaptation of computer software packages and
their associated documentation to suit the requirements of different languages. It
is more than just changing the language, it also takes into account a number of
technical (e.g. text expansion) and cultural (e.g. time/currency formats) factors.
This course is a general “sparks” of the process of Software Localisation, and easy-
to-use programs will give a better idea of the localisation process during a hole
project.

By this course, the student have a closer look at the localisation industry, its
past and its future, the roles involved in localisation, the main players and the pro-
fessional associations. After the course the student will feel familiar with concepts
such as internationalisation, globalisation, coded character sets, Unicode, leverag-
ing, QA, simship, etc. and will be ready to enter and explore the intriguing world
of localisation. For all team members working on localisation projects, including
project managers, translators, terminologists, engineers, it is essential to see the
“big picture” of a project. This course aims at providing this big picture. It will not
only provide an overview of a typical localisation process, but also produce a real-
life case study where a product is taken through all phases from initial publication
in a source language to publication in multiple target languages. From source file
hand-off to delivery, from project setup to completion, from initial quality check to
full proofreading, the course will show the full localisation process and the role of
technology in the various process steps.

2.4. Technologies of software development

This is a complex mandatory course, containing theoretical and practice-based
education. The students study about UML, RUP, XP, Agile development, Design
Patterns, Refactoring, and open-source development. Let’s audit the training of
these technologies.

2.4.1. UML, RUP

The UML specification describes a metamodel that defines the elements of each
diagram, how the diagrams may be assembled, and how they can be extended.
In this cource through two conrete projects, the students learn how to use the
UML, how to use development process like RUP, how to improve software quality,



314 6 th International Conference on Applied Informatics

development technologies. The main goal to make the students able to think in
abstract way.
The students learn all layers defined by the UML metamodel architecture:

• user object

• model

• metamodel

• metametamodel

layers. To prove a standard development process through the projects, we use the
Rational Unified Process.

First of all, we provide the background of the UML and how the students
can approach it. We explane what the UML exactly defines, and the mainings
of models. They receive an overview of the diagrams supported by the UML and
the fundamental object-oriented concepts applied through the development. The
learn how to create the Use Case Model, from the diagram through narratives
and scenarios to fully document user requirements. The learn to identify and
define Use Cases verifyed by a fictive customer. Based on the requirements, they
will begin the contruction of the Class diagram, including classes, interfaces, and
associations. Applying aggregation, composition they learn the basic restrictions
of the structure of a software. The get familiar with the Activity diagram to
model logic, such as business processes and complex system behaviors. The start
modelling the interactions between objects using the Sequence diagram reusing the
information in the diagrams already drawn. Learning the Collaboration diagram,
the model object interactions, they can use all unique properties of these tools. For
fully understand and document the behavior of the objects in a system, they use
Statechart diagrams. The package diagram to teached to organize the components
of the software. When, students reaches this point in the design, they need to build
the system from the point of view of hardware and hardware components, so they
learn the essence of Component and Deployment diagrams.

This course is practice-based, so through the two projects, they implement these
simple application to recognize the connection between the diagrams. The RUP
is very good tool to coordinate the work of the development. It is essential to
understand the importance of guidelines in group of programmers containg more
then 50 poeple.

2.4.2. Agile methodologies

It is important to ensure a methodology for the small projects too. The RUP
is too “big” to handle a development of a small programming group. Agile means
a lightweight methodology, that is small, easy to learn and use and doesn’t require
extensive management support. This project technology treat every person as a
real member of the developing team toward the common goal. Main concepts of
Agile programming:



I. Juhász, I. Fazekas: Teaching technologies at the Institute of Informatics of the . . . 315

- working software
- customer collaboration
- responding to change
- individuals and interactions

2.4.3. Extreme programming (XP)

Extreme programming comes basicly from the work of Kent Beck and Ward
Cunningham. The main tenets of XP is to include the Change. The traditional
development process starts with full and deep analysis and design at the beginning,
and hopes to get it right. It is not too hard to recognize that it costs far more to
fix some fault in the design after the software is mostly written than to discover
and fix the fault early in the design process. The problem of the design is that the
requirements always change as the project progresses. For example: understanding
of the customer and the developer of the problem increases, making things obvious
that weren’t obvious at the beginning.

The basic principle of XP is that, software requirements will change, so let’s
calculate with that change. Use a development process that makes it easy to change
software and reduces the cost of doing so.
The students learn the basic practices of XP:

• communication,

• simplicity,

• feedback,

• courage.

Becouse of the rapid rise of interest in XP in the OO programming community, it
is essential to teach this methodology to make students become IT professionals.
Studens get familiar with the following XP practices:

- the planning game
- short releases
- metaphor
- simple design
- testing
- refactoring
- pair programming
- collective ownership
- continuous integration
- 40-Hour week
- on-site customer
- coding standards



316 6 th International Conference on Applied Informatics

2.4.4. Design patterns

Design patterns have become an essential part of object-oriented design and
programming. They provide elegant and maintainable solutions to commonly en-
countered programming problems. These days it is difficult to find an article or
book about designing software without the mention design pattern. An under-
standing of design patterns has become a critical part of any object-oriented pro-
grammer’s toolbox. The big challenge in developing software is to recognize the
problems of developing process int the future. Libraries and frameworks help the
programmer to reuse useful tools for many software systems. The tool provided by
libraries and frameworks slove common but low-level problems.

Design patterns works at a higher abstraction level, its deal with solving com-
mon design problems. They do not provide code that can be used for one problem.
Rather, patters help to generate a design solution for a software problem that has
come up repeatedly over many software projects. A design pattern means a general
description of a problematic situation and a general solution handling the rising
fault, so recognizing the situation through a concrete case, its can be adapted and
applied to a specific situation. Using design patterns takes some experience.

The students must have at least a basic understanding of all the patterns avail-
able, and then be able to recognize when they have a design solution that can be
helped by using a pattern. Often, this requires nothing more than reading through
the patterns to see if any fit the case at hand. When a patterns fits, it tends to
ring a little bell of recognition. The longer you work with patterns, the easier they
become to use.

The students got familiar with the basic design patterns, and the practice of
design patterns. Through a concrete project, they understand the essence of this
design technology.

2.4.5. Refactoring

The fact is, most programming involves maintaining and modifying existing
code. Refactoring is one of the most recent object-oriented techniques to be for-
malized and developed into an essential programming tool.

Refactoring is the process of changing a software system in such a way that it
does not alter the external behavior of the code yet improves its internal structure.
In other words, it is a disciplined appoach to improving the design of existing code.
It should be considered a basic principle of programming and does not require any
special methodology. It most powerfull tool to clean up code that minimizes the
changes of introducing bugs and failures. In this course the students learn the
essence of refactoring, so the method when they refactor they are improving the
design of the code after it has been written. With refactoring they can take a “ugly”
design, and rework it into well-designed code, and probabely find the balance of
work changes.

The students learn from building the system how tp improve design. The re-
sulting interaction leads to a program which design that says good as development



I. Juhász, I. Fazekas: Teaching technologies at the Institute of Informatics of the . . . 317

continues. Along the way the students see both the process of refactoring and the
application. First of all, we teach the basics or the general principles of refactoring,
including definitions, and the reason for doing refactoring. The next move is to
describe how to find bad smells in code and how to clean them up. In our course,
the testing plays a very important role, so describes how to build tests into code
with a simple open-source. The students receive a catalog of refactorings. It’s not
a full, comprehensive catalog, but containing the most famous refactorings.

We use examples in Java. Refactoring can, of course, be done with other lan-
guages. We hope that the essence of this course will be applicable to other languages
too. The student got familiar with the basic refactoring process, making attention
to reduce risk of change, not to change functionalities, solving only one thing at a
Time, and testing each step.

2.4.6. Open source developping

What if the source code of any program is available for anyone to see, use, and
adapt? Can it works? Well, open source is a solution of system development, that is
usually released under one of several licenses. Even though the source code is open,
people can still gain financially by adding value to the software through support
and training. The most important example of a successfull open source project is
the Linux operating system. In one hand, open source is one way to release and
license software, in other hand it can be considered a development methodology.

A set of conventions and customs describing how to use this technology, and
how to develop using open source since the beginning of the development process.

3. Observations

For the students, the most troublesome part of the courses is the abstract think-
ing. To design for the future, the create a software structure for the requirements
of the morning, to recognize a general case from a concrete ones. Creating IT pro-
fessionals, the knowledge of abstract design is essential, including the most-recent
technologies, and to learn and use the point of view of abstraction is the most
difficult problem.

References
[1] O.- J. Dahl, E. W. Dijkstra, C. a. Hoare. Structured programming. 1978.
[2] Dr Job’s Journal, www.dii.com
[3] Object Oriented Programming www.oop.com
[4] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-Oriented

Software Architecture - A System of Patterns. Wiley and Sons, 1996.
[5] Automatic code generation from design patterns
[6] P. Coad. Object-Oriented Patterns. Communications of the ACM, V 35 N 9, Sept

1992, pp. 152-159.



318 6 th International Conference on Applied Informatics

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Reading, MA: Addison-Wesley, 1995.

[8] Schmidt, Douglas. Using Design Patterns to Develop Reusable Object-Oriented Com-
munication Software, CACM, (Special Issue on Object-Oriented Experiences, Mo-
hamed Fayad and W.T. Tsai Eds.), 38,10, October 1995.

[9] http://java.sun.com/docs/books/jls/second
¯
edition/html/j.title.doc.html

[10] http://java.sun.com/docs/books/vmspec/
[11] Robert W. Sebesta, Concepts of Programming Languages, 6/E, 2004 Addison-Wesley
[12] Jim Highsmith, Agile Project Management: Creating Innovative Products, 2004

Addison Wesley
[13] William C. Wake, Refactoring Workbook, 2004 Addison Wesley
[14] Ramez Elmasri, Shamkant B. Navathe; Fundamentals of Database Systems, 4/E,

2004 Addison-Wesley


