6" International Conference on Applied Informatics
Eger, Hungary, January 27-81, 2004.

DFA of Non Unique Decodable Code

Janos Falucskai

Department of Mathematics and Informatics, College of Nyiregyhéza
e-mail: falu@Qzeus.nyf.hu

Abstract

Sets of codewords can be represented by finite automata (FAs) and every
FA can be represented by connection matrices or regular expressions. Our
goal is to find similar systems and to solve one of the systems’s problems in
another system. Having a set of codewords our problem is to decide whether
there is two or more sequences of codewords wich form the same chain of
characters of codewords. (1 and 0 in binary case).

We show an algorithm (program) that solves this problem by using finite
automata and their deterministic finite automata (DFAs).

1. Introduction

For example let the set of codes be K = {a1, as, a3, a4}, and a; = 01, ag = 00,
as = 011, ay = 100. If we have string § = 01100, we can see there are two different
decompositions, namely 8 = a3 - as = a1 - ag. We show an algorithm solving this
problem using finite automata and their deterministic finite automata (DFAs). We
will get that non unique decodable strings are represented by DFA. There is another
representation, in terms of regular expressions, which is often useful.

2. Analogies

In this section we list the analog systems using in area of examination, and
show an example for all. The examples are for code K = {01,00,011,100}. We
have to consider that a codeword may be followed any codeword and sometime the
chain has to end.

Left regular language:
S — B0|C0|C1|D1|e
A— 51
B — A0

303

304 6" International Conference on Applied Informatics

C — 50
D — C1

Right regular language:
S — 1A|0C|e
A — 0B
B — 0S8
C — 0S]1S|1D
D— 18

Equation system of left regular expression:
S=B0+C0+C1+Dl+¢

A=51
B = A0
C =250
D=C1

Equation system of right regular expression:
S=14A4+0C+¢

A=0B
B =085
C=05S+15+1D
D =18

Connection matrix:

S A B C D
S|- 1 — o0 -
Al- 0 - -
Blo — - -
clol1 - - - 1
pDl1 - - -

(In this case we have to give the startstate (S) and the set of finalstates {S}.)

Finite automaton:

J. Falucskai: DFA of Non Unique Decodable Code 305

0

1 '

Having a set of codewords our problem is to decide whether there is two or
more sequences of codewords wich form the same chain of characters of codewords.
We can see the following analogous systems: left and right regular languages, left
and right regular expressions, finite automaton, connection matrices.

We can solve our problem in two ways: by using regular expressions or utilizing
(deterministic) finite automaton.

3. Codes and Regular Expressions

In equations, “products” represent concatenation and are usually written with-
out any explicit operator sign, and “sums” represent alternative choices and may
be read as “or”; or “union”. The symbol € represents an empty string.

A system of equations is “solved” in much the same way that a system of al-
gebraic equations would be solved, any variable may substituted by an equivalent
expression. The process of elimination would eventually leave a single variable de-
fined in terms of constants, following which the whole chain of substitutions could
be unravelled to obtain the values of all the variables.

There is only one technical point, which concerns the procedure to be followed
when the same variable occurs on both sides of an equation, as in

X =Xa+b,

where X is unknown, a and b are known regular expressions.

3.1. The Arden’s Lemma

In the next part we give a summary of solution of equation called Arden’s
lemma. First we have to define the “star” operator. Let A be a finite set, and A*
is the next expression:

e . .
Z = A*, where A" = A* A1
i=0

306 6" International Conference on Applied Informatics

Since A = A*A"~! is recursive formula, we have to give its expansion:
AV =¢
Al=A
* (products) represent concatenation.

We have four rules of inference:
- two expressions equal to a third are equal to each other
- an expression may be substituted for an equal expression
- the solution to X = Xa +bis X = ba*
- the solution to X =aX +bis X = a™b

These last two rules are the Arden’s lemma. The notation a* stands for the
continued alternative (¢ + a + aa + aaa + ...) and is read “a star”. Any symbolic
expression constructed by the aid of concatenation, alternative selection, and the
star operation, is called a reqular expression. Regular expressions are ideally suited
to describe paths through a finite automaton, and conversely, any regular expression
has a diagrammatic representation.

If ¥ is a finite set, ¢ denotes null string and @ is the empty set, we have the
definition of a regular expression:

- € is a regular expression

-) is a regular expression

- a € ¥ is a regular expression

- if and y are regular expressions, so is xy
if x and y are regular expressions, so is x + y
- if = is a regular expression, so is z*

3.2. Systems of Equations

The regular expression’s equation X = aX + 8 that can be solved by X = a*f
is just as applicable to systems of equations if they are written in matrix notation.
Thus if we define the following vectors and matrices

o (4)cam (0 h) = (1)

we can write one single matrix equation:
X=aX+p

whose solution would be
X=a"3

Of course, such a solution is not of much value unless there is an effective way
to calculate the “star” of a matrix. Fortunately the matrix elements of the star are
simple regular expressions of the elements of the matrix being starred, expressing
in a concise form the results of the chain of substitutions that would otherwise be
carried out explicitly each time a system of symbolic equations was to be solved.

J. Falucskai: DFA of Non Unique Decodable Code 307

Indeed, the easiest way to establish the point is to go ahead and solve the equations:
Given
A=aA+bB+u

B=cA+dB+v

Disentangling «w and v from the final equations for A and B yields a formula for o*

. (a*bd*c)*a* (a*bd*c)a*bd*
@ = (d*ca*b)*d*ca* (d*ca*b)*d* ’

Although these results have been stated for a 2 x 2 matrix, the fact that the ma-
trix elements can be matrices themselves means that the results are valid in terms
of submatrices. By repeated partitioning, in principle a system of any size can be
reached. In practice, each partition multiplies the complexity of the symbolic ex-
pressions involved, quickly reaching unmanageable proportions. Alternative forms
for these matrix elements can be derived using some of the identities satisfied by
regular expressions, but the difficulty is a fundamental one, the formulas required
are intrinsically complicated.

3.3. The Calculus of Regular Expressions

If we are genuinely interested in infinite solutions, we can entertain alternatives
to Arden’s lemma, but we should beware that the result may depend upon the
node which we have chosen for the final equation; it will only express a solution
involving that node. It often happens that a diagram contains a loop which makes
a transition to a second loop, but that there is no return path to the first loop. If
the equations are solved for a node in the first loop, the existence of the second
loop will not be evident.

The algebra of regular expressions is not as direct as one would like, and often
questions involving regular expressions are most easily resolved by constructing an
equivalent diagram, transforming the diagram, and converting the result back into
a regular expression. For example, regular expressions form a Boolean algebra, but
the definition of a regular expression only involves unions - the regular expression
sum. Intersections, which represent words conforming to several regular expression
descriptions, and complements, which are words which in no way conform to the
description, are readily defined in terms of diagrams, but not by operations directly
on the regular expression itself. For example, excluded words are obtained through
the subset construction, even though they are then readily described by regular
expressions.

A related problem is the one of determining the equality of two regular expres-
sions, and is the reason that there is no canonical form for regular expressions.
Equality can be determined by constructing equivalent diagrams, reducing them to
their simplest form and comparing the results; however there is no unique regular
expression corresponding to any given diagram.

Although each automata can be described by a regular expression, the tendency
is for the expression to become more and more complicated. Generally speaking,

308 6" International Conference on Applied Informatics

the limit of a sequence of regular expressions need not be a regular expression. One
of the charming aspects of this theory is its formal resemblace to the differential
calculus of analysis. The derivative of Q with respect to a is the set of tails of the
words in €2 which begin with the letter a. Sets are the derivatives of sets; since
regular expressions define sets it remains only. We use these methods to find not
unique decodable strings of our codes by FAs, DFAs and regular expressions.

3.4. How to Find the Not Unique Decodable Strings

First, we can define a finite automaton (FA) according to the code. Our next
step is to make this automaton deterministic (DFA), and define the regular equation
system of DFA. We get the not unique decodable string(s) by solving the equation
system -using Arden’s lemma if necessary- and omitting the whole codewords from
the result. For example:

ll

Figure 1: The FA of code K = {01,00,011, 100}

Figure 2: The DFA of code K = {01, 00,011,100}

Regular expression of DFA is the following: 0(00)*1(01)*1{(011)*00 + 100} =
0a31l af1{a}00 + 4}, if we omit those code words wich are assigned by *, we get
the string: 01100.

J. Falucskai: DFA of Non Unique Decodable Code 309

4. Code and DFA, about the Program

We can get answer for existing of the not unique decodable string during con-
struction of DFA. If we have two or more final state in one new state involving by
the same symbol, then at this new state two or more codewords will end. Since our
automaton is deterministic, we found a chain which is closed by different codewords,
so this chain is a not unique decodable string.

Our application use this method to find the answer. The program has developed
in Visual Basic 6.0. It is able to determine FA and DFA for a code, and can describe
the automata in graphical form or as a special text file: first row of the text file
contains the final states and the remaining rows contain the rules of automaton.

References

[1] Janusz A. Brzozowski: Derivatives of regular expressions, Journal of the Association
for Computing Machinery (1964) 481-494.

[2] Conway, J.H, Regular Algebra and Finite Machines, Chapman, Ltd., London, 1971
(ISBN 412-10620-5).

[3] Mc Intosh, H: Wolfram’s class IV automaton and a good life. Physica D 45 (1990),
45-105.

Postal address

Janos Falucskai

Department of Mathematics and Informatics
College of Nyiregyhdza

4400 Nyiregyhdza, Séstéi ut 31/B

Hungary

