6" International Conference on Applied Informatics
Eger, Hungary, January 27-81, 2004.

Planar union of rectangles with sides
parallel to the coordinate axis

Daniel Schmid, Hanspeter Bopp

Department of Geomatics, Computer Science and Mathematics
Stuttgart University of Applied Sciences
e-mail: daniel.schmid@hft-stuttgart.de, hanspeter.bopp@hft-stuttgart.de

Abstract

Computational Geometry is a relatively new subject of Computer Sci-
ence (since c. 1975), which is concerned with the development of efficient
algorithms and data structures for geometric problems. For example, the
calculation of Convex Hulls or Voronoi-Diagrams for given sets of points are
typical problems of Computational Geometry.

The topic of this paper is the examination of the so called Rectangle Union,
that means given is a set of rectangles with sides parallel to the coordinate
axis and searched are the measure and the boundary lines of the union of the
inside areas of the given rectangles.

First, this problem will be defined and some examples will be illustrated.
After that, algorithms and data structures for the calculation of the searched
values will be discussed and evaluated. In doing so, the plane-sweep technique
as a basic principle of Computational Geometry will be applied.

Categories and Subject Descriptors: 1.3.5 [Computer Graphics|: Com-
putational Geometry and Object Modelling

Key Words and Phrases: O-Notation, plane-sweep technique

1. Introduction

Given is a finite set of n not degenerated rectangles with sides parallel to the
coordinate axis in the plane.

Searched are the measure and the boundary lines of the Rectangle Union related
to the given n rectangles.

Definition 1.1. The Rectangle Union F is an area which is defined by the
n

union of the inside areas F; of the given rectangles, that means F' = |J F;.
i=1

293

294 6" International Conference on Applied Informatics

Example 1.1. Here is n = 5. The Rectangle Union consists of two disjoint parts,
that means F' = P; U P,. There are two outer boundary lines (Z; and Z3) and one
inner boundary line (Z2), altogether 24 boundary edges. The inner contour line Zs
encloses a whole inside P; and is orientated in a mathematically negative manner.

a
a
$
.__x.
.

K - | Fz |

[.
ANNN
I
R

L

Picture 1.1: Rectangle Union example 1.1

For this example, the problem seems to be easy - the three boundary lines can
be recognized by looking.

Example 1.2. This second example with n = 50 illustrates that the Rectangle
Union is a relatively complex problem which has to be calculated by a computer
for big values of n. In this case the result consists of 3 outer boundary lines and 6
inner boundary lines with 146 boundary edges altogether.

e Versinigung schrenparaleber Hechlecke

n

| I P —

Slaﬂl Euil GIBatI Urdn| 50 Rechbecke Zural [5 (373, 4380

Picture 1.2: input rectangles example 1.2

D. Schmid, H. Bopp: Planar union of rectangles with sides parallel to the . .. 295

F2a Vereimgung ochsenparalleler Hechlecke

|]

.-

i

Tl

{
|
=
=
]
o Eail cucarl Undo| S0Rechiecke Zufall[50 {273, 4a0)

Picture 1.3: Rectangle Union example 1.2

There are practical applications of the Rectangle Union - for example in the field
of design of digital circuits (“VLSI-design”) or in the field of concurrency controls
of data bases (see [2]).

2. Calculation of the measure of the Rectangle
Union

This problem can be solved by two different methods: “divide and conquer” and
“plane-sweeping”. Both methods are basic principles of Computational Geometry
(see [3]). In the following, the plane-sweep algorithm will be explained :

For example, the input data can be provided in the form of coordinates of end
points of the rectangle diagonals. The strictly monotonic increasing sequence of
the rectangle abscissae {x;} with i € {1,2,...n,} can be determined directly by
scanning the input coordinates. It is essential : n, < 2n.

In the same way the strictly monotonic increasing sequence of the rectangle
ordinates {y;} with i € {1,2,...n,} is found. Here it is essential again : n, < 2n.

Now, the sorted sequence of the vertical rectangle sides {sx} can be determined
by a scan of the input coordinates: the sequence has 2n elements and must be
sorted by ascending abscissae. In this context, a vertical rectangle side {s} is
defined by sp := (ag;lk, ug,tx) (abscissa; lower ordinate, upper ordinate, type)
with ag, € {x;} and Iy, ux € {y;} and t; = “left” or t = “right”.

The following iterative method for the calculation of the measure €2 is an ex-
ample of “plane-sweeping”, that means the plane will be “swept” with a line z = x;
(so-called “sweep line”) from left to right. (So the number of iterations is n,,).

Necessary for this method is a data structure for the Ordinate Interval [y1, ¥y,].
Any time a left rectangle side sy, is found during the “plane-sweeping”, the interval

296 6" International Conference on Applied Informatics

[lz,ur] € [y1,Yn,] must be “allocated” until the corresponding right rectangle side
sg is found. (Then the interval [lg,ugr] = [I1,ur] must be “deallocated” again).

Let A(j) be the number of allocations of an interval of form [y;, y;+1] , where 1 <
Jj < ny. (At the beginning of the method the Ordinate Interval is “not allocated”
A(j) =0V).

The allocation of a (left) vertical rectangle side s;, means:
A(j) = A(G) + 1V j with [y;,yj41] € [lr, ur]-
Analogous the deallocation of a (right) vertical rectangle side means:
A(j) = A(j) =1V j with [y;,y;41] € [lr, ur].

Furthermore let L be the total length of all disjoint and allocated intervals C
[Y1,Yn,]. With this definition, L can be calculated as the total length of all allocated
intervals of form

[j yj1] s L= (yj1 —y;) ¥ j with A(j) > 0.
J
The formulation of the method for the calculation of the measure 2 can now be
done like this : If the “sweep line” is currently at place x;, the increase of measure
Q is the product of (x; — 2;—1) and the total length L of all disjoint and allocated
intervals C [y1,yn,] (see picture 2.1).
Before the next iteration step, all left vertical rectangle sides s; with abscissa

x; must be allocated . All right vertical rectangle sides s, with abscissa x; must
be deallocated.

apeeplme 5

aven "
pen) |

P o .;"'I..- l_;-"'

Razll

w1 |
Pep=i

Rr=l

Hmd }:

Picture 2.1: example of a “plane-sweeping” with “sweep line” at place x = x;

D. Schmid, H. Bopp: Planar union of rectangles with sides parallel to the ... 297

So the “sweep” of the plane will be done by a scan of the strictly growing
sequence of the rectangle abscissae {x;}. It’s now possible to produce a formulation
in meta language:

Q=0 k=1; x,:=x,

for(inti=1; i < n,; i=i+1)

{
Q=Q+(x-%,4) L
while (a, = x;, AND k <2n)
{
if (t, ="left")
{
allocate(s,)
)
else
{
deallocate(s,)
)
k=k+1
}
}

Theorem 2.1. The calculation of the measure of a Rectangle Union with n rec-
tangles requires a time complexity O(nlogyn) and a storage complexity O(n).

Proof. Storage complexity: The cardinality of both sequences {z;} and {y;} is not
bigger than 2n. The number of allocations to store is not bigger than 2n, either.
The sequence {s;} has 2n elements. For the total number M of elementary storage
cells needed, it follows that M = M (n) < (¢c1 +c2+c3+c¢4)2n < cen = M = O(n).

Time complexity: For obtaining the abscissae, the ordinates and the vertical
rectangle sides by scanning the input data (coordinates of rectangle diagonals), only
a linear complexity O(n) is required. The sorting of these data can be achieved
with a complexity O(nlog,n) (see[1]).

For example the sorted sequences {z;}, {y;} and {si} can be stored in arrays,
so that the value of an element for a given index can be found with constant
complexity O(c). Finding an index for a given value of an element can be done
with logarithmic complexity O(log, n) (binary search).

For the Ordinate Interval [y1,¥n,], it’s possible to use a data structure called
Segment Tree (see [2] and [3]). This special binary tree allows us to allocate and
deallocate rectangle sides (as partial intervals of [y1, ¥y,]) with logarithmic complex-
ity O(log, n). Furthermore it is possible to obtain the total length L of all disjoint
and allocated intervals in the Segment Tree with constant complexity O(c).

Complexity of “plane-sweeping”: Each of the 2n vertical rectangle sides will be
allocated or deallocated exactly once during the “plane-sweeping”. Furthermore for

298 6" International Conference on Applied Informatics

each iteration step it is necessary to actualize some loop parameters and to check
the orientation of the rectangle side - this always requires constant complexity O(c).
The measure has to be actualized exactly -times (each time O(c)).

For the number of needed elementary operations for the “plane-sweeping” it
follows that A,(n) < 2n(c1logyn + c2) + cang = Ap(n) = O(nlogyn).

It follows that a total time complexity O(nlog,n) is necessary. [J

3. Boundary lines of the Rectangle Union

3.1. Properties of the boundary lines

Theorem 3.1. Number of boundary edges For the number p of boundary edges of
a Rectangle Union of n rectangles it is essential: p < n? + 4n (proof: see [3]).

Definition 3.1. Orientation of a boundary edge

The orientation of a boundary edge is defined as the orientation of its rectangle
sides (every boundary edge is a part of a rectangle side). The orientation of a
rectangle side is defined like this: if you “walk” along the rectangle, the inside area
of the rectangle always lies to the left.

L1

Definition 3.2. Orientation of a boundary line

The orientation of a boundary line is defined as the orientation of its vertical bound-
ary edge with minimal abscissa - if this boundary edge is orientated “down”, then
the boundary line is orientated in mathematical positive manner and we call it an
outer boundary line. Otherwise the boundary line is orientated in a mathematically
negative manner and we call it an inner boundary line (see Example 1.1).

Consequence 3.1. The boundary lines of a Rectangle Union are closed and orien-
tated polygons. Each boundary line consists of alternating vertical and horizontal
boundary edges.

3.2. Calculation of the boundary lines

The algorithm consists of three phases :
3.2.1 Sorting the input data

3.2.2 Calculation of the boundary edges
3.2.3 Calculation of the boundary lines

D. Schmid, H. Bopp: Planar union of rectangles with sides parallel to the . .. 299

3.2.1. Sorting the input data

Like in chapter 2, the sorted abscissae {x;} and the sorted ordinates {y;} can
be obtained by scanning the input coordinates. Depending on the way we solve
the main problem in phase 3.2.2, we also have to create the sorted sequences of the
vertical rectangle sides {s;} and the horizontal rectangle sides {s}}. If we use a
“plane-sweep” algorithm in phase 3.2.2, the sorting of the rectangle sides has to be
done by using several sorting attributes : for example the vertical rectangle sides
must be sorted primarily for ascending abscissae, secondly for type (left before
right rectangle sides) and thirdly for ascending lower and upper ordinates.

3.2.2. Calculation of the boundary edges

The calculation of the boundary edges is the main problem for the calculation
of the boundary lines. For doing that, there are several “plane-sweep” algorithms
which use a modified form of the Segment Tree as data structure (see [2], [3]).
Furthermore there is one “divide and conquer” algorithm (see [1]).

For the solution of this problem we also need additional data structures like
linear lists and binary search trees.

Because of the complexity of the algorithms, turn to the references for details.

3.2.3. Calculation of the boundary lines

If all vertical and horizontal boundary lines are found, the last step is to identify
the closed and oriented boundary lines which consist of alternating horizontal and
vertical boundary edges.

Given is (after phase 3.2.2) the sorted sequence of vertical boundary edges {v;}.
v; = (a;;1;, u;, d;) (abscissa; lower ordinate, upper ordinate, orientation | or 1) {v;}
is sorted primarily for ascending abscissae, secondly for orientation (J before 1) and
thirdly for ascending lower ordinates.

Moreover, given is (after phase 3.2.2) the sorted sequence of horizontal boundary
edges {h;}. h; = (05;1;,r;,d;) (ordinate; left abscissa, right abscissa, orientation
— or <) {h;} is primarily sorted for ascending abscissae, secondly for orientation
(— before <) and thirdly for ascending left abscissae.

For the calculation of the closed and oriented boundary lines, the method starts
with the first vertical boundary edge v1: a horizontal following boundary edge must
be found for a given vertical boundary edge. For this horizontal edge, the next
vertical following boundary edge must be found, and so on.

Definition 3.3. Rule for finding a following boundary edge
If there are two possible following boundary edges for a given boundary edge, then
the following boundary edge to one’s right must be chosen.

300 6" International Conference on Applied Informatics

0

If this rule is applied, all the outer boundary lines will be pairwise disjoint. That
means the boundary lines will be created in a way that produces the maximum
number of inner boundary lines. With this rule, the information about all “holes”
in the Rectangle Union are included in the inner boundary lines.

The following example demonstrates the importance of the definition 3.3: Given
are 4 congruent rectangles whereby all 16 rectangle sides are boundary edges of the
Rectangle Union. Applying the rule of Definition 3.3, one outer boundary line (12
boundary edges) and one inner boundary line (4 boundary edges) is obtained.

7

) V)
7

Each vertical boundary edge which is found by applying Definition 3.3 must be
deleted. If there is no more vertical following boundary edge for a boundary line,
then this boundary line is closed.

The next boundary line starts with the “smallest” vertical boundary edge related
to the still existing sorted boundary edges {v;}.

In this way the first vertical boundary edge of a boundary line always has the
smallest abscissa. With the orientation of this first edge the orientation of the
boundary line is defined (inner or outer boundary line).

All boundary lines are found if there are no more elements in {v;}.

Theorem 3.2. The calculation of the boundary lines of a Rectangle Union with n
rectangles requires a time complezity O(n?logsn) and a storage complexity O(n?)

(proof: see [3]).

4. Conclusion

The Rectangle Union is a geometric problem which can be solved efficiently by
applying basic principles of Computational Geometry (“plane-sweeping”, “divide
and conquer”) in combination with adequate data structures (special binary trees,
Lists, Arrays).

D. Schmid, H. Bopp: Planar union of rectangles with sides parallel to the . .. 301

In the scope of this project, a computer program for the calculation and visu-
alization of Rectangle Unions was realized with the programming language Java.

An interesting extension to this problem would be the spatial union of cuboids
with sides parallel to the coordinate axis.

References

[1] Giiting , Ralf Hartmut : Datenstrukturen und Algorithmen, Verlag B.G. Teubner
Stuttgart, 1992

[2] Preparata , Franco P. ; Shamos , Michael Ian : Computational Geometry, Springer
Verlag , 1985

[3] Schmid, Daniel : Prinzipien der Algorithmischen Geometrie, dargestellt an Auf-
gaben mit Rechtecken, Diplomarbeit im Fachbereich C, Fachhochschule fiir Technik
Stuttgart WS 2002/2003

Postal address

Daniel Schmid, Hanspeter Bopp

Department of Geomatics, Computer Science and Mathematics
Stuttgart University of Applied Sciences

Schellingstrafle 24, 70174 Stuttgart

Germany

