6th International Conference on Applied Informatics Eger, Hungary, January 27–31, 2004.

On Spatial Involute Gearing

Hellmuth Stachel

Institute of Discrete Mathematics and Geometry, Vienna University of Technology e-mail: stachel@dmg.tuwien.ac.at

Abstract

This is a geometric approach to spatial involute gearing which has recently been developed by Jack Phillips [2]. New proofs of Phillips' fundamental theorems are given. And it is pointed out that also a permanent straight line contact is possible for conjugate helical involutes. In addition, the gearing is illustrated in various ways.

Key Words and Phrases: Spatial gearing, involute gearing, helical involute

1. Basic kinematics of the gear set

The function of a gear set is to transmit a rotary motion of the input wheel Σ_1 about the axis p_{10} with angular velocity ω_{10} to the output wheel Σ_2 rotating about p_{20} with ω_{20} in a uniform way, i.e., with a constant *transmission ratio*

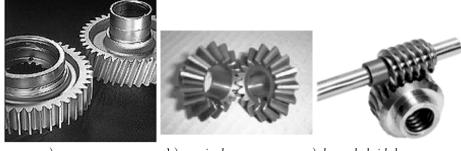
$$i := \omega_{20} / \omega_{10} = \text{const.} \tag{1}$$

According to the relative position of the gear axes p_{10} and p_{20} we distinguish the following types (see Fig. 1):

- a) Planar gearing (spur gears) for parallel axes p_{10}, p_{20} ,
- b) spherical gearing (*conical gears*) for intersecting axes p_{10}, p_{20} , and
- c) spatial gearing (hyperboloidal gears) for skew axes p_{10}, p_{20} , in particular worm gears for orthogonal p_{10}, p_{20} .

1.1. Planar gearing

In the case of parallel axes p_{10}, p_{20} we confine us to a perpendicular plane where two systems Σ_1, Σ_2 are rotating against Σ_0 about centers 10, 20 with velocities ω_{10}, ω_{20} , respectively. Two curves $c_1 \subset \Sigma_1$ and $c_2 \subset \Sigma_2$ are *conjugate* profiles when they are in permanent contact during the transmission, i.e., (c_2, c_1) is a pair of enveloping curves under the relative motion Σ_2/Σ_1 . Due to a standard theorem



- a) spur gears
- b) conical gears

c) hyperboloidal gears e.g. worm gears

Figure 1: Types of gears

from plane kinematics (see, e.g., [5] or [1]) the common normal at the point E of contact must pass through the pole 12 of this relative motion. The planar Three-Pole-Theorem states that 12 divides the segment 01 02 at the constant ratio i. Hence also 12 is fixed in Σ_0 . We summarize:

Theorem 1.1. (Fundamental law of planar gearing):

The profiles $c_1 \subset \Sigma_1$ and $c_2 \subset \Sigma_2$ are conjugate if and only if the common normal e (=meshing normal) at the point E of contact (=meshing point) passes through the relative pole 12.

Due to L. Euler (1765) planar involute gearing (see Fig. 2) is characterized by the condition that with respect to the fixed system Σ_0 all meshing normals e are coincident. This implies

- (i) The profiles are involutes of the base circles, i.e., circles tangent to the meshing normal and centered at 01, 02, respectively.
- (ii) For constant driving velocity ω_{10} the point of contact E runs relative to Σ_0 with constant velocity along e.
- (iii) The transmitting force has a fixed line of action.
- (iv) The transmission ratio depends only on the dimensions of the curves c_1, c_2 and not on their relative position. Therefore this planar gearing remains independent of errors upon assembly.

1.2. Basics of spatial kinematics

There is a tight connection between spatial kinematics and the geometry of lines in the Euclidean 3-space \mathbb{E}^3 .

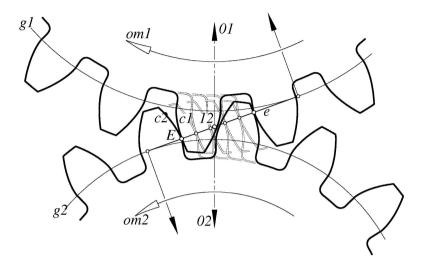


Figure 2: Planar involute gearing

1.2.1. Metric line geometry in \mathbb{E}^3

Any oriented line (spear) $g = \mathbf{a} + \mathbb{R}\mathbf{g}$ can be uniquely represented by the pair of vectors $(\mathbf{g}, \hat{\mathbf{g}})$, the direction vector \mathbf{g} and the momentum vector $\hat{\mathbf{g}}$, with

$$\mathbf{g} \cdot \mathbf{g} = 1$$
 and $\widehat{\mathbf{g}} := \mathbf{a} \times \mathbf{g}$.

It is convenient to combine this pair to a dual vector

$$\mathbf{g} := \mathbf{g} + \varepsilon \widehat{\mathbf{g}},$$

where the dual unit ε obeys the rule $\varepsilon^2 = 0$. We extend the usual dot product of vectors to dual vectors and notice

$$\mathbf{g} \cdot \mathbf{g} = \mathbf{g} \cdot \mathbf{g} + 2\mathbf{g} \cdot \widehat{\mathbf{g}} = 1 + \varepsilon \, 0 = 1$$
.

Hence we call **g** a *dual unit vector*.

Theorem 1.2. There is a bijection between oriented lines (spears) g in \mathbb{E}^3 and dual unit vectors \mathbf{g}

$$g \mapsto \mathbf{g} = \mathbf{g} + \varepsilon \widehat{\mathbf{g}} \quad with \quad \mathbf{g} \cdot \mathbf{g} = 1$$

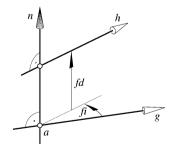


Figure 3: Two spears g, h with the dual angle $\varphi = \varphi + \varepsilon \widehat{\varphi}$

The following theorem reveals the geometric meaning of the dot product and the cross product of dual unit vectors, expressed in terms of the *dual angle* (see Fig. 3) $\varphi = \varphi + \varepsilon \widehat{\varphi}$ between g und h, i.e., with $\varphi = \not\leqslant gh$ and $\widehat{\varphi}$ as shortest distance between the straight lines (compare [3], p. 155 ff):

Theorem 1.3. Let $\underline{\varphi} = \varphi + \varepsilon \widehat{\varphi}$ be the dual angle between the spears g and h and let n be a spear along a common perpendicular. Then we have

$$\cos\varphi - \varepsilon\widehat{\varphi}\sin\varphi = \underline{\cos}\underline{\varphi} = \underline{\mathbf{g}}\cdot\underline{\mathbf{h}} = \mathbf{g}\cdot\mathbf{h} + \varepsilon(\widehat{\mathbf{g}}\cdot\mathbf{h} + \mathbf{g}\cdot\widehat{\mathbf{h}}),$$
$$(\sin\varphi + \varepsilon\widehat{\varphi}\cos\varphi)(\mathbf{n} + \varepsilon\widehat{\mathbf{n}}) = \underline{\sin}\varphi\,\underline{\mathbf{n}} = \mathbf{g}\times\underline{\mathbf{h}} = \mathbf{g}\times\mathbf{h} + \varepsilon(\widehat{\mathbf{g}}\times\mathbf{h} + \mathbf{g}\times\widehat{\mathbf{h}}).$$

The components φ , $\hat{\varphi}$ of the dual angle $\underline{\varphi}$ are signed according to the orientation of the common perpendicular n. When the orientation of n is reversed then φ and $\hat{\varphi}$ change their sign. When the orientation either of g or of h is reversed then φ has to be replaced by $\varphi + \pi \pmod{2\pi}$. Hence, the product $(\hat{\varphi} \tan \varphi)$ is invariant against any change of orientation.

 $\mathbf{g} \cdot \mathbf{h} = 0$ characterizes perpendicular intersection.

1.2.2. Instantaneous screw

There is also a geometric interpretation for dual vectors which are not unit vectors: At any moment a spatial motion Σ_i / Σ_j assigns to the point $X \in \Sigma_i$ (coordinate vector **x**) the velocity vector

$$_{X}\mathbf{v}_{ij} = \widehat{\mathbf{q}}_{ij} + (\mathbf{q}_{ij} \times \mathbf{x}).$$
⁽²⁾

relative to Σ_j . We combine the pair $(\mathbf{q}_{ij}, \mathbf{\hat{q}}_{ij})$ again to a dual vector $\mathbf{\underline{q}}_{ij}$. This vector can always be expressed as a multiple of a unit vector, i.e.,

$$\underline{\mathbf{q}}_{ij} := \mathbf{q}_{ij} + \varepsilon \widehat{\mathbf{q}}_{ij} = (\omega_{ij} + \varepsilon \widehat{\omega}_{ij})(\mathbf{p}_{ij} + \varepsilon \widehat{\mathbf{p}}_{ij}) = \underline{\omega}_{ij} \underline{\mathbf{p}}_{ij} \quad \text{with} \quad \underline{\mathbf{p}}_{ij} \cdot \underline{\mathbf{p}}_{ij} = 1.$$
(3)

It turns out that $_X \mathbf{v}_{ij}$ coincides with the velocity vector of X under a helical motion (= *instantaneous screw motion*) about the *instantaneous axis* p_{ij} with dual unit vector $\underline{\mathbf{p}}_{ij}$. The dual factor $\underline{\omega}_{ij}$ is a compound of the angular velocity ω_{ij} and the translatory velocity $\hat{\omega}_{ij}$ of this helical motion. $\underline{\mathbf{q}}_{ij}$ is called the *instantaneous screw*.

For each instantaneous motion (screw $\underline{\mathbf{q}}_{ij}$) the path normals n constitute a linear line complex, the (= complex of normals) as the dual unit vector $\underline{\mathbf{n}} = \mathbf{n} + \varepsilon \widehat{\mathbf{n}}$ of any normal n obeys the equation

$$\widehat{\mathbf{q}}_{ij}.\mathbf{n} + \mathbf{q}_{ij}.\widehat{\mathbf{n}} = 0 \quad (\iff \underline{\mathbf{q}}_{ij} \cdot \underline{\mathbf{n}} \in \mathbb{R}).$$
(4)

This results from ${}_{X}\mathbf{v}_{ij}\mathbf{.n} = 0$ and $\widehat{\mathbf{n}} = \mathbf{x} \times \mathbf{n}$. By Theorem 1.3 it is equivalent to

$$(\omega_{ij} + \varepsilon \widehat{\omega}_{ij}) \underline{\cos \alpha} \in \mathbb{R} \quad \text{or} \quad \widehat{\omega}_{ij} / \omega_{ij} = \widehat{\alpha} \, \tan \alpha \tag{5}$$

with $\underline{\alpha}$ as dual angle between p_{ij} and any orientation of n.

The following is a standard result of spatial kinematics (see e.g. [1] or [4]):

Theorem 1.4. (Spatial Three-Pole-Theorem):

If for three given systems $\Sigma_0, \Sigma_1, \Sigma_2$ the dual vectors $\underline{\mathbf{q}}_{10}, \underline{\mathbf{q}}_{20}$ are the instantaneous screws of $\Sigma_1/\Sigma_0, \Sigma_2/\Sigma_0$, resp., then

$$\underline{\mathbf{q}}_{21} = \underline{\mathbf{q}}_{20} - \underline{\mathbf{q}}_{10}$$

is the instantaneous screw of the relative motion Σ_2/Σ_1 .

Let the line *n* (dual unit vector $\underline{\mathbf{n}}$) orthogonally intersect both axes $\underline{\mathbf{p}}_{10}$ of Σ_1/Σ_0 and $\underline{\mathbf{p}}_{20}$ of Σ_2/Σ_0 . Then *n* does the same with the axis $\underline{\mathbf{p}}_{21}$ of $\Sigma_2/\overline{\Sigma}_1$, provided $\omega_{21} \neq 0$. This follows from

$$\underline{\mathbf{n}} \cdot \underline{\mathbf{p}}_{10} = \underline{\mathbf{n}} \cdot \underline{\mathbf{p}}_{20} = 0 \implies \underline{\omega}_{21} (\underline{\mathbf{n}} \cdot \underline{\mathbf{p}}_{21}) = \underline{\omega}_{20} (\underline{\mathbf{n}} \cdot \underline{\mathbf{p}}_{20}) - \underline{\omega}_{10} (\underline{\mathbf{n}} \cdot \underline{\mathbf{p}}_{10}) = 0,$$

and there exists an inverse $\underline{\omega}_{21}^{-1}$.

1.2.3. Fundamentals of spatial gearing

Let the systems Σ_1, Σ_2 rotate against Σ_0 about the fixed axes p_{10}, p_{20} with constant angular velocities ω_{10}, ω_{20} , respectively. Then the instantaneous screw of the relative motion Σ_2/Σ_1 is constant in Σ_0 , too. It reads

$$\underline{\mathbf{q}}_{21} = \omega_{20} \, \underline{\mathbf{p}}_{20} - \omega_{10} \, \underline{\mathbf{p}}_{10} \quad \text{for} \quad \omega_{10}, \omega_{20} \in \mathbb{R} \,. \tag{6}$$

When two surfaces $\Phi_1 \subset \Sigma_1$ and $\Phi_2 \subset \Sigma_2$ are *conjugate* tooth flanks for a uniform transmission, then Φ_1 contacts Φ_2 permanently under the relative motion Σ_2/Σ_1 . In analogy to the planar case (Theorem 1.1) we obtain

Theorem 1.5. (Fundamental law of spatial gearing):

The tooth flanks $\Phi_1 \in \Sigma_1$ and $\Phi_2 \in \Sigma_2$ are conjugate if and only if at each point E of contact (= meshing point) the contact normal (= meshing normal) e is included in the complex of normals of the relative motion Σ_2/Σ_1 .

Due to (4) the dual unit vector $\underline{\mathbf{e}}$ of any meshing normal e obeys the equation of the linear line complex

$$\underline{\mathbf{q}}_{21} \cdot \underline{\mathbf{e}} = \omega_{20} \left(\underline{\mathbf{p}}_{20} \cdot \underline{\mathbf{e}} \right) - \omega_{10} \left(\underline{\mathbf{p}}_{10} \cdot \underline{\mathbf{e}} \right) \in \mathbb{R}.$$

Hence Theorem 1.3 implies for the dual angles $\underline{\alpha}_1$, $\underline{\alpha}_2$ between e and p_{10} and p_{20} , resp., (see Fig. 3, compare [2], Fig. 2.02, p. 46)

$$\omega_{20}\widehat{\alpha}_2\sin\alpha_2 - \omega_{10}\widehat{\alpha}_1\sin\alpha_1 = 0 \implies i = \frac{\omega_{20}}{\omega_{10}} = \frac{\widehat{\alpha}_1\sin\alpha_1}{\widehat{\alpha}_2\sin\alpha_2}.$$
 (7)

2. J. Phillips' spatial involute gearing

In [2] Jack Phillips characterizes the spatial involute gearing in analogy to the planar case as follows: This is a gearing with point contact where all meshing normals eare coincident in Σ_0 — and skew to p_{10} and p_{20} . We exclude also perpendicularity between e and one of the axes. According to (7) this meshing normal e determines already a constant transmission ratio.

In the next section we determine possible tooth flanks Φ_1, Φ_2 for such an involute gearing. At any point E of contact the common tangent plane ε of Φ_1, Φ_2 is orthogonal to e.

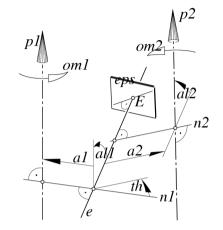


Figure 4: Spatial involute gearing with the meshing point E tracing the fixed meshing normal e

2.1. Slip tracks

First we focus on the paths of the meshing point E relative to the wheels Σ_1 , Σ_2 . These paths are called *slip tracks* c_1 , c_2 :

2.1.1. Slip tracks as orthogonal trajectories

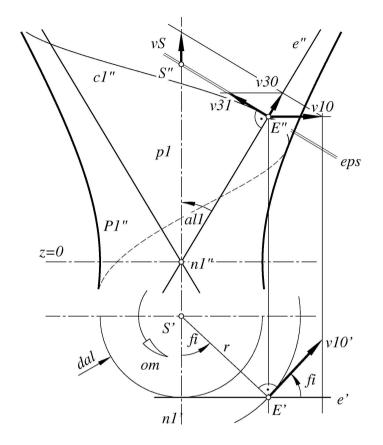
 Σ_1/Σ_0 is a rotation about p_{10} , and we have $E \in e$ where e is fixed in Σ_0 . Therefore this slip track c_1 is located on the *one-sheet hyperboloid* Π_1 of revolution through e with axis p_{10} .

The point of contact E is located on Φ_1 ; therefore the line tangent to the slip track c_1 is orthogonal to e. This leads to our fist result:

Lemma 2.1. The path c_1 of E relative to Σ_1 is an orthogonal trajectory of the *e*-regulus on the one-sheet hyperboloid Π_1 through *e* with axis p_{10} .

Let this hyperboloid $\Pi_1 \subset \Sigma_1$ with point E rotate about p_{10} with the constant angular velocity ω_{10} , while simultaneously E runs relative to Σ_1 along c_1 (velocity vector $_E \mathbf{v}_1$) such that E traces in Σ_0 the fixed meshing normal e (velocity vector $_E \mathbf{v}_0$). For the sake of brevity we call this movement the "absolute motion" of E via Σ_1 . The velocity vector of E under this absolute motion is

$${}_E\mathbf{v}_0 = {}_E\mathbf{v}_1 + {}_E\mathbf{v}_{10} \tag{8}$$



with $_E \mathbf{v}_{10}$ stemming from the rotation Σ_1 / Σ_0 about p_{10} .

Figure 5: The velocities of the meshing point E relative to Σ_1 and Σ_0

We check the front view in Fig. 5 with p_{10} and e being parallel to the image plane. Hence the tangent plane $\varepsilon \perp e$ is displayed as a line.

Let r denote the instantaneous distance of E from p_{10} . Then we have $||_E \mathbf{v}_{10}|| = r\omega_{10}$. In the front view of Fig. 5 we see the length

$$\|E\mathbf{v}_{10}''\| = |r\omega_{10}\cos\varphi| = |\widehat{\alpha}_1\omega_{10}| = \text{const.}$$

with $\hat{\alpha}_1$ as the shortest distance between e and p_{10} — as used in (7) and Fig. 4. This implies a constant velocity of E also against Σ_0 along e, namely

$$\|_E \mathbf{v}_0\| = |\widehat{\alpha}_1 \omega_{10} \sin \alpha_1| = \text{const. with } \alpha_1 = \gtrless e p_{10}.$$
(9)

When E moves with constant velocity along e, then the point S of intersection between the plane ε of contact ($\varepsilon \perp e$) and p_{10} moves with constant velocity, too. We get

$$\|_{S}\mathbf{v}_{0}\| = |\widehat{\alpha}_{1}\omega_{10}\tan\alpha_{1}| = \text{const.}$$
(10)

This means, that ε performs relative to Σ_1 a rotation about p_{10} with constant angular velocity $-\omega_{10}$ and a translation along p_{10} with constant velocity $||_S \mathbf{v}_0||$. So, the envelope Φ_1 of ε in Σ_1 is a *helical involute* (= developable helical surface), formed by the tangent lines g_1 of a helix (see Fig. 7) with axis p_{10} , with radius $\hat{\alpha}_1$ and with pitch $\hat{\alpha}_1 \tan \alpha_1$.¹

Lemma 2.2. The slip track c_1 is located on a helical involute Φ_1 with the pitch $\hat{\alpha}_1 \tan \alpha_1$. At each point $E \in c_1$ there is an orthogonal intersection between Φ_1 and the one-sheet hyperboloid Π_1 mentioned in Lemma 2.1.

We resolve equation (8) for the vector ${}_{E}\mathbf{v}_{1}$, which is tangent to the slip track $c_{1} \subset \Phi_{1}$, and obtain

Corollary 2.1. The velocity vector ${}_{E}\mathbf{v}_{1}$ of the slip track c_{1} at any point E is the image of the negative velocity vector $-{}_{E}\mathbf{v}_{10}$ of the rotation Σ_{1}/Σ_{0} under orthogonal projection into the tangent plane ε of Φ_{1} .

2.1.2. The tooth flanks

The simplest tooth flank for point contact is the envelope Φ_1 of the plane ε of contact in Σ_1 . Hence we can summarize:

Theorem 2.1. (Phillips' 1st Fundamental Theorem:)

The helical involutes Φ_1, Φ_2 are conjugate tooth flanks with point contact for a spatial gearing where all meshing normals coincide with a line e fixed in Σ_0 .

Fig. 5 shows one generator g_1 of the helical involute Φ_1 . At E there is a triad of three mutually perpendicular lines, the generator g_1 of Φ_1 , the generator e of the hyperboloid Π_1 , and the line which is parallel to the common normal n_1 of eand p_1 .

The screw motion about the axis p_{10} which generates the helical involute Φ_1 has also a linear complex of normals. The *e*-regulus of the one-sheet hyperboloid Π_1 is subset of this complex. Thus, with eq. (5) we can confirm the pitch of Φ_1 as stated in Lemma 2.2.

2.1.3. The continuum of slip tracks on Π_1 and on Φ_1

In Figures 6 and 7 different slip tracks c_1 are displayed, either on the one-sheet hyperboloid Π_1 or on the helical involute Φ_1 .

Let p_{10} be the z-axis of a cartesian coordinate system with the plane z = 0 containing the throat circle of Π_1 (see Fig. 5). Then the slip track c_1 which starts

¹The signed distances $\alpha_1, \hat{\alpha}_1$ specified in Figures 5 und 6 give $\hat{\alpha}_1 \tan \alpha_1 < 0$. In Fig. 7 the pitch of Φ_1 is positive.

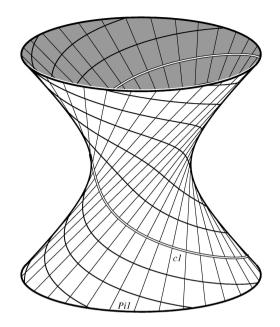


Figure 6: Slip tracks c_1 as orthogonal trajectories on the one-sheet hyperboloid Π_1

in the plane z = 0 on the x-axis can be parametrized as

$$c_1(t): \begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix} = \widehat{\alpha}_1 \begin{pmatrix} \cos t \\ \sin t \\ 0 \end{pmatrix} + \widehat{\alpha}_1 t \sin \alpha_1 \begin{pmatrix} \sin \alpha_1 \sin t \\ -\sin \alpha_1 \cos t \\ \cos \alpha_1 \end{pmatrix}.$$
(11)

This follows from (9) or from the differential equation expressing the perpendicularity between c_1 and the *e*-regulus. The different slip tracks on Π_1 arise from each other by rotation about p_{10} .

The same curve can also be written as

$$c_1(t): \begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix} = \widehat{\alpha}_1 \begin{pmatrix} \cos t \\ \sin t \\ t \tan \alpha_1 \end{pmatrix} - \widehat{\alpha}_1 t \sin^2 \alpha_1 \begin{pmatrix} -\sin t \\ \cos t \\ \tan \alpha_1 \end{pmatrix}.$$
(12)

This shows c_1 as a curve on the helical involute Φ_1 as

- 1. the first term on the right hand side parametrizes the edge of regression of Φ_1 ;
- 2. the second term has the direction of generators $g_1 \subset \Phi_1$.

The lengths along g_1 is proportional to the angle t of rotation measured from the starting point. Therefore any two different slip tracks on Φ_1 (see Fig. 7) enclose on each generator a segment of the same length.

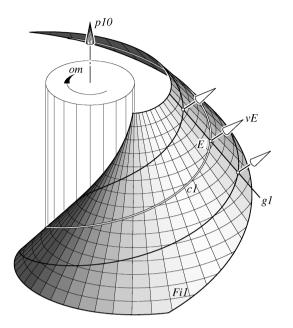


Figure 7: The tooth flank Φ_1 (helical involute) with the slip track c_1 of point $E \in g_1$

The different slip tracks on Φ_1 arise from each other by helical motions about p_{10} with pitch $\hat{\alpha}_1 \tan \alpha_1$ according to Lemma 2.2. The slip tracks c_1 on Φ_1 are characterized by the following property: If a rotation of Φ_1 about its axis p_1 is combined with a movement of point E on Φ_1 such that this point E traces relative to Σ_0 a surface normal e of Φ_1 , then the path $c_1 \subset \Phi_1$ of E on Φ_1 must be a slip track.

In the sense of Corollary 2.1 the slip tracks are the *integral curves* of the vector field of Φ_1 which consists of the tangent components of the velocity vectors under the rotation Σ_1/Σ_0 .

2.2. Two helical involutes in contact

Theorem 2.2. (Phillips' 2nd Fundamental Theorem:)

If two given helical involutes Φ_1, Φ_2 are placed in mutual contact at point E and if their axes are kept fixed in this position, then Φ_1 and Φ_2 serve as tooth flanks for uniform transmission whether the axes are parallel, intersecting or skew.

According to (7) the transmission ratio i depends only on Φ_1 and Φ_2 and not on their relative position. Therefore this spatial gearing remains independent of errors upon assembly.

Proof. When Φ_1 rotates with constant angular velocity about the axis p_{10} and

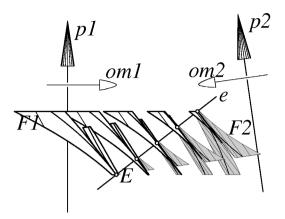


Figure 8: Different postures of Φ_1 and Φ_2 with line contact

point *E* runs relative to Φ_1 along the slip track with ${}_E\mathbf{v}_1$ according to (8), then *E* traces in Σ_0 a line *e* which remains normal to Φ_1 . By (9) the velocity of *E* under this absolute motion is $\|{}_E\mathbf{v}_0\| = |\widehat{\alpha}_1\omega_{10}\sin\alpha_1|$.

Due to (7) E gets the same velocity vector along e under the analogous absolute motion via Σ_2 . Hence the contact between Φ_1 and Φ_2 at E is perserved under the simultaneous rotations with transmission ratio i from (7).

This means that the advantages (ii)–(iv) of planar involute gearing as listed above are still true for spatial involute gearing.

The velocity vector $_E \mathbf{v}_0$ of the absolute motions via Σ_1 or Σ_2 does not change when E varies on the generators $g_1 \subset \Phi_1$ (see Fig. 7)² or on $g_2 \subset \Phi_2$. Hence both generators perform a translation in direction of e under the absolute motions of their points via Σ_1 or Σ_2 .

It has already been pointed out that $g_i \subset \varepsilon$, i = 1, 2, is perpendicular to the common normal n_i between p_{i0} and e (note Fig. 5). Hence the angle between g_1 and g_2 is congruent to the angle θ between n_1 and n_2 (see Fig. 4). This proves

Theorem 2.3. Under the uniform transmission induced by two contacting helical involutes Φ_1, Φ_2 according to Theorem 2.2 the angle θ between the generators $g_1 \subset \Phi_1$ and $g_2 \subset \Phi_2$ at the point E of contact remains constant (see Fig. 10). This angle is congruent to the angle made by the common normals n_1, n_2 between e and the axes p_{10}, p_{20} .

²Note that all normal lines of the helical involute Φ_1 make the same dual angle $\alpha_1 + \varepsilon \hat{\alpha}_1$ with the axis p_{10} .

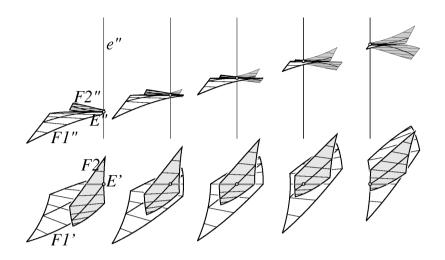


Figure 9: Different postures of Φ_1 and Φ_2 with *line contact* (double line) seen in direction of the contact normal e (top view — below) and in the front view (parallel e — above).

Corollary 2.2. If two helical involutes Φ_1, Φ_2 are placed such that they are in contact along a common generator and if their axis are kept fixed, then Φ_1 and Φ_2 serve as gear flanks for a spatial gearing with permanent straight line contact. All contact normals are located in a fixed plane parallel to the two axes p_{10}, p_{20} .³

In Figs. 8–10 this gearing is illustrated: Fig. 8 shows a front view for an image plane parallel to p_{10} , p_{20} and e. Under the rotation about p_{10} the tooth flank Φ_1 is in contact along a straight line with the conjugate Φ_2 rotating about p_{20} . The flanks are bounded by two slip tracks and by two involutes, which are the intersections with planes perpendicular to the axes p_{10} or p_{20} , respectively. Five different positions of the flanks in mutual contact are picked out.

These five positions are also displayed one by one in Fig. 9 ($\theta = 0$) and in Fig. 10 ($\theta \neq 0$): The contact normal e of E is now in vertical position; the top view shows the orthogonal projection of Φ_1 and Φ_2 into the common tangent plane ε . Beside some generators of the tooth flanks also the slip tracks of a central point E are displayed.

The double line in the top view of Fig. 9 indicates the line of contact. Fig. 10

 $^{^{3}\}mathrm{This}$ includes as a special case the line contact between helical spur gear as displayed in Fig. 1a .

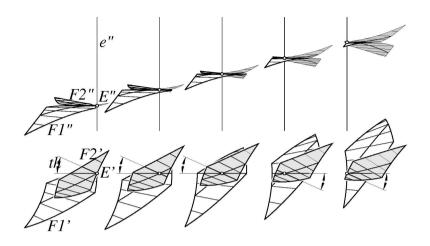


Figure 10: Different postures of Φ_1 and Φ_2 with *point contact* at *E*. The angle θ between the generators at *E* remains constant (Theorem 2.3).

shows a case with point contact at E and the constant angle $\theta \neq 0$.

References

- Husty, M., Karger, A., Sachs, H., Steinhilper, W.: Kinematik und Robotik, Springer-Verlag, Berlin-Heidelberg 1997.
- [2] Phillips, J.: General Spatial Involute Gearing, Springer Verlag, New York 2003.
- [3] Pottmann, H., Wallner, J.: Computational Line Geometry, Springer Verlag, Berlin, Heidelberg 2001.
- [4] Stachel, H.: Instantaneous spatial kinematics and the invariants of the axodes. Proc. Ball 2000 Symposium, Cambridge 2000, no. 23.
- [5] Wunderlich, W.: Ebene Kinematik, Bibliographisches Institut, Mannheim 1970.

Postal address

Hellmuth Stachel Institute of Discrete Mathematics and Geometry Vienna University of Technology Wiedner Hauptstr. 8-10/104, A 1040 Wien Austria