
6 th International Conference on Applied Informatics
Eger, Hungary, January 27–31, 2004.

Standardized interchange of application
design models

Ágnes Papp

University of Debrecen
e-mail: agi@delfin.unideb.hu

Abstract

Unified Modeling Language is a standard for modeling an application that
is developed in object-oriented manner. XML is a key enabler of these systems
in terms of transport of information. XML schemas are used to define and
constrain XML documents. This paper discusses the use of UML in designing
XML schemas.
Keywords: MOF, UML, XMI, XML schemas, Model Driven Architecture.

Introduction
Application systems usually maintain difficult data structures. There are sev-

eral application development tools but data conversion is needed when they want
to make accessible their data for each other. UML has been widely accepted as an
object oriented analysis and design method. An application-neutral interchange
format allows UML models to be interoperable between development tools and
developers. The XML is an appropriate format for transferring data via the In-
ternet. The XML based XMI standard allow for different types of applications
to interchange their data or models in a standardized way. There is a new way
of developing applications, the Model Driven Architecture. The MDA specifica-
tion consists of a platform-independent UML based model (PIM), and one or more
platform-specific models (PSM). The MDA also will take advantage of XMI when
it defines the mapping from PIM to XML.

1. The UML metamodel architecture

Specifications by OMG [1] summarize principles of data storing and modeling
in a four level architecture [2]. The first level is the meta-meta model that defines
UML at metamodel level. The second level is the metamodel that describes the

251

252 6 th International Conference on Applied Informatics

UML syntax. In the third level there are the models created by the users, and in
the fourth level there are the object instances or records.

1.1. MOF

The MOF (Meta Object Facility) specification [3] includes describing the OMG
metamodel concept. The MOF is designed to support many different kinds of meta-
information. This is achieved by treating the meta-information as information and
formally modeling each distinct kind of meta-information. These formal models are
expressed using the metamodeling construct provided by the MOF model [4]. The
MOF model is based on the concepts of entity-relationship modeling. The three
kinds of elements for a meta-information model are objects, links that connect
objects and data values. These constructs are organized as MOF packages. A
MOF Class defines the type of an object but not its implementation. A MOF
Association defines a class of links between MOF objects. Links are always binary
and directed. The third construct in the MOF model is the Package. A MOF
Package serves as the unit of modularization and reuse of meta-information models
like UML packages.

1.2. UML

UML (Unified Modeling Language) [5] is a graphical language for visualizing,
specifying, constructing, and documenting the elements of an object system. It has
been widely accepted as an object-oriented analysis and design method [6]. UML is
created as a union of the previous leading object modeling languages and methods
and became standard for object-oriented modeling. It is a graphical language that
represents the model by diagrams.

UML specification defines:

• Notation: Graphical notations for the visual representation for model ele-
ments.

• Semantics: Semantics for the object modeling concepts.

The UML metamodel defines the language using the following elements. Every
kind of diagrams uses combination of them:

• Modeling elements: Structural elements (class, interface, collaboration, use
case, component, node), Behavioral elements (interaction, state machine),
Grouping elements (package, subsystem), Misc. (note).

• Relationships - Edges connecting modeling elements as nodes: Dependency,
Association, Generalization, Realization.

• Extensibility Mechanism - Support for making UML extensible: Stereotype,
Tagged value, Constraint.

Á. Papp: Standardized interchange of application design models 253

• Diagrams: Structural Diagrams: Class Diagram, Object Diagram, Behav-
ioral Diagrams: Use Case Diagram, Sequence Diagram, Collaboration di-
agram, State Transition Diagram, Activity Diagram, Implementation Dia-
grams: Component Diagram, Deployment Diagram.

While UML defines the constructs above and their interchangeable semantics it
does not provide the explicit format to exchange the model information.

1.3. XMI

Az XMI (XMLMetadata Interchange) [7] is a widely used interchange format for
sharing objects using XML (Extensible Markup Language). XMI based standards
are in use for integrating tools, repositories, applications and data warehouses.
It provides rules by which a schema can be generated for any valid MOF-based
metamodel.

XMI defines most important aspects that describe objects in XML [8].

• The representation of objects is made by terms of elements and attributes.

• XMI includes standard mechanism to link objects within the same file or
across files.

• Identifying objects allow references from other objects.

• The XMI model handles versioning of objects and their definitions.

• XMI documents can be validated using DTD-s or other schemas.

• Support for XML Schema. The mapping is parameterized, giving users more
flexibility when apply the rules. For example, in earlier discussions there
was a debate about whether a class attribute should map to an element or
attribute in the XML document.

XMI defines production rules:

• Production of DTDs starting from an object model.

• Production of XML documents starting from objects.

• Production of XML Schemas starting from an object model.

• Production of XML Documents compatible with XML Schemas.

• Reverse engineering from XML to an object model.

MOF is the foundation technology for describing object models, which cover the
wide range of object domains: analysis (UML), software (Java, C++), components
(EJB, IDL, CCM), and databases (CWM). XMI is applicable to all levels of objects
and metaobjects.

254 6 th International Conference on Applied Informatics

2. UML and XML Shemas

This section discusses the use of UML in designing XML schemas. XML
schemas are used to define and constrain XML document instances. An exam-
ple will be shown to represent the connection between UML class diagrams and
XML schema definitions [9]. The first package specification is shown as a UML
class diagram. The PurchaseOrder class has two attributes and three associations.
A few of these attributes are has [0..1] multiplicity, which means that these at-
tribute values are optional. The Address class plays both a ShipTo and BillTo role
in association with the PurchaseOrder class. The multiplicity of 1 means, that
PurchaseOrder must have exactly one of each address role. On the Item class there
are QuantityType and SKU types. Both types are user-defined data types and
defined as other classes in the UML package. (Figure 1)

Figure 1. The PurchaseOrder package

In the Address package specification both USAddress and UKAddress are special-
ized subtypes of the Address class. The class name Address is shown in italics,
which means that it is an abstract class. (Figure 2)

Figure 2. The Address package

Á. Papp: Standardized interchange of application design models 255

We need a mapping specification between UML class diagrams and XML schema
definitions, in this example the W3C XML Schema Definition Language [10] (XSD).

Goals of mapping specification from UML to XML schemas are:

• to allow sufficient flexibility to accomplish most schema design requirements

• smooth transition from conceptual model to a detailed design model

• XML schemas can be generated from any UML class diagram

• reuse of the model in different deployment languages and environments.

The first schema definition is produced using the default mapping rules. These
defaults are aligned with XMI specification for using XML as a model interchange
format. A class in UML defines a complete data structure that maps by default to
a complexType in XSD.

• <xs:all> element is used to create an unordered model group.

• A UML class creates a distinct namespace for its attribute names. The at-
tributes in UML classes are produced as local element definitions.

• When a UML attribute is optional it is expressed with minOccurs and max-
Occurs attributes in the XSD.

• Primitive data types from the XSD specification can be written directly to
the generated schema.

• A top level element is created for each complexType in the schema. The
default name for this element is the name of the class.

The associations are also added to the complexType XSD elements. Each associa-
tion has role name and multiplicity.

• The default mapping for associations creates a wrapper element in XSD with
the role name in UML.

• This element contains the instances of the associated class, which the schema
refers to.

<xs:complexType name="PurchaseOrder">
<xs:all>

<xs:element name="orderDate" type="xs:date" minOccurs="0" maxOccurs="1"/>
<xs:element name="comment" type="xs:string" minOccurs="0" maxOccurs="1"/>
<xs:element name="shipTo">
<xs:complexType>
<xs:sequence>

<xs:element ref="Address"/>
</xs:sequence>

</xs:complexType>

256 6 th International Conference on Applied Informatics

</xs:element>
<xs:element name="billTo">
<xs:complexType>
<xs:sequence>

<xs:element ref="Address"/>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name="items" minOccurs="0" maxOccurs="1">
<xs:complexType>
<xs:sequence>

<xs:element ref="Item" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:all>
</xs:complexType>

The default mapping to XSD would produce a complexType definition for SKU
and QuantityType , but we want these to become user-defined simple data types.
This is easily achieved by addig the «XSDsimpleType» stereotype to these two
classes.

<xs:simpleType name="SKU">
<xs:annotation>

<xs:documentation>Stock Keeping Unit, a code
for identifying products</xs:documentation>

</xs:annotation>
<xs:restriction base="xs:string">

<xs:pattern value="\d{3}-[A-Z]{2}"/>
</xs:restriction>

</xs:simpleType>

A fundamental concept in object-oriented analysis and design is generalization
from one class to another. The specialized subclass inherits attributes and associ-
ations from its parent class. This is easily presented in W3C XML schema. The
complexType definitions for Address and USAddress are produced as follows.

• The top-level element and complexType definitions for Address include the
XSD attribute abstract=“true”.

• The USAddress element includes substitutionGroup=“Address”, which means
that whenever the Address element is required as a content element, then
USAddress may be substituted in its place.

<xs:element name="Address" type="Address" abstract="true"/>
<xs:complexType name="Address" abstract="true">
<xs:all>

<xs:element name="name" type="xs:string"/>
<xs:element name="street" type="xs:string"/>
<xs:element name="city" type="xs:string"/>

</xs:all>
</xs:complexType>

Á. Papp: Standardized interchange of application design models 257

<xs:element name="USAddress" type="USAddress"
substitutionGroup="Address"/>

<xs:complexType name="USAddress">
<xs:complexContent>

<xs:extension base="Address">
<xs:all>
<xs:element name="state" type="USState"/>
<xs:element name="zip" type="xs:positiveInteger"/>

</xs:all>
</xs:extension>

</xs:complexContent>
</xs:complexType>

The next step is refining the conceptual model to a design model specialized
for XML schema. This is achieved by adding stereotypes and properties, which
are based on a customization profile for UML. A UML profile has three key items:
stereotypes, tagged values (properties) and constraints. A profile provides a defini-
tion of these items and explains how they extend the UML in a particular domain,
in this case XML schema design. A stereotype assigned to a UML class extends
the meaning of a class definition in the model.

Three stereotypes from UML Profile for XML Schemas are summarized as follows:
«XSDcomplexType» on a UML class

• modelGroup (all | sequence | choice)

• attributeMapping (element | attribute)

• roleMapping (element | attribute)

• elementNameMapping (upperCamelCase | lowerCamelCase | . . .)

«XSDelement» on UML attribute or association end

• position (integer value) within a sequence model group

• anonymousType (true | false)

«XSDattribute» on UML attribute or association end

• use (prohibited | optional | required | fixed)

Other stereotypes e.g. «XSDsimpleType» or «XSDfacet» can be used without
adding properties. Many of the profile property can be set as defaults for an entire
UML model or for a package in the model.

Design requirements divided into the next categories:

• Should the attributes of a UML class be produced as XML attributes or child
elements in the schema?

• Which kind of model group (all, sequence or choice) should be used to validate
an element content?

258 6 th International Conference on Applied Informatics

• Should we choose to include or exclude XML element tags that represent
class names and roles in the UML associations?

• How do we map UML class name to XML element names?

The PurchoseOrder class diagram now includes profile extensions that resolve
these design choices. (Figure 3)

Figure 3. The PurchoseOrder package with profile extensions

The following schema produced for the PurchoseOrder class and its associations:

<xs:element name="purchaseOrder" type="ipo:PurchaseOrder"/>
<xs:complexType name="PurchaseOrder">

<xs:sequence>
<xs:element name="shipTo" type="ipo:Address"/>
<xs:element name="billTo" type="ipo:Address"/>
<xs:element name="comment" type="xs:string" minOccurs="0" maxOccurs="1"/>
<xs:element name="items" minOccurs="0" maxOccurs="1">

<xs:complexType>
<xs:sequence>

<xs:element ref="ipo:item" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:sequence>
<xs:attribute name="orderDate" type="xs:date"/>

</xs:complexType>

Á. Papp: Standardized interchange of application design models 259

• By assigning «XSDattribute» stereotype on the orderDate attribute in UML,
we specify that it should be represented as an attribute in XML. The comment
UML attribute follows the default mapping to an element in the schema.

• We assigned the «XSDcomplexType» stereotype to the PurchoseOrder class
and set the modelGroup property to “sequence”. The default mapping uses
<all>. Each UML attribute and association end must be annotated with a
profile property that specifies its position.

• The «XSDelement» stereotype is assigned to the association ends connected
to the Address class and the anonymousType property is set to “true”. It
means that the instance document omits the Address tag and embeds its
element and attribute content directly within the role tag.

• Because the item role on the association is not specified as an anonymousType,
its definition in the schema retains the role container element to hold elements
for the related class.

• The default mapping from UML creates element names equal to the class
names. By adding the elementNameMapping property to a UML class along
with the «XSDcomplexType» stereotype can be set other name convention.

There are different types of UML modeling tools that create XML schemas for
UML models. Many UML tools support the standard XMI format as an import-
export format and some use it as their native file format. When an XMI file is
imported it is transformed into other representations e.g. HTML.

3. The Model Driven Architecture

There is a new way of developing applications, the Model Driven Architecture
[11]. The MDA specification consists of a platform-independent UML based model
(PIM), and one or more platform-specific models (PSM). With MDA, an applica-
tion system is modeled once and only once. The MDA also will take advantage of
XMI when it defines the mapping from PIM to XML.

In MDA there is a distinction between application architecture and systems
architecture [12]. Application architecture includes the components and structural
relationships that specify the functional purpose of the application. Systems ar-
chitecture consists of the lower level components and structural relationships that
allow the application architecture to execute. This separation is fundamental for
MDA. A PIM is a complete application specification that is independent of tech-
nology platforms. A PIM is mapped onto a PMS, which provide the systems
architecture infrastructure. This mapping implements the PIM on a specific plat-
form, turning it into an executable application. The PIM let us model a solution
visually at higher level of abstraction. Re-writing applications when a new tech-
nology comes will be unnecessary. We just simply regenerate the application using
a mapping into the newer environment.

260 6 th International Conference on Applied Informatics

There are standard PIM to PSM mappings for many of the popular technology
platforms such as COBRA, J2EE, .NET. OMG standards - MOF, XML, XMI
and CWM - work in concert to make the MDA a complete approach to software
development.

References
[1] Object Management Group http://www.omg.org
[2] http://protege.stanford.edu/plugins/xmi/background.html
[3] Meta Object Facility http://www.omg.org/technology/documents/formal/mof.htm
[4] http://www.iam.unibe.ch/ schlpbch/XMIforMoose/reportHTMLized/node3.html
[5] Unified Modeling Language

http://www.omg.org/technology/documents/formal/uml.htm
[6] Vég Csaba: Alkalmazásfejlesztés az UML szabványos jelöléseivel, Logos 2000, 1999
[7] XML Metadata Interchange

http://www.omg.org/technology/documents/formal/xmi.htm
[8] UML to XML Design Rules Project

http://xml.coverpages.org/uml2xmlDesignRules.html
[9] Modeling XML Vocabularies with UML: Part I, II, III by Dave Carlson

http://www.xml.com/pub/a/2001/08/22/uml.html
[10] W3C XML Schema Definition Language http://www.w3.org/XML/Schema
[11] OMG Model Driven Architecture http://www.omg.org/mda
[12] Executable UML: Diagrams for the Future http://www.devx.com/uml/Article/10717

Postal address

Ágnes Papp
Health College
University of Debrecen
4027 Debrecen
Egyetem sgt. 13.
Hungary

