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Abstract

In the paper two variants of a combinatorial problem for the set Fn
q of

sequences of length n over the alphabet Fq = {0, 1, .., q − 1} are considered,
with some applications. The original problem was the following: for a given
word w ∈ Fn

q , what is the smallest integer k such that we can reconstruct
w if we know all of its subwords of length k. This problem was solved by
Lothaire [8] .

We consider the following variant of this problem: the n-letter word w =
w1...wn (which is called aDNA-word) is composed over an alphabet consisting
of q complement pairs:{i, ī : i = 0, .., q − 1}; and denote by w∗ its reverse
complement, i.e. w∗ = w̄n...w̄1. A DNA-word u is called a subword of w if
it is a subword of either w or w∗. (Another formulation is that we identify
w and w∗.) We want to reconstruct w from its subwords of length k. We
give a simple proof for k = n − 1, and apply this result for determining the
automorphism group of the poset of DNA-words of length at most n, partially
ordered by the above subword relation.

Key Words and Phrases: poset, reconstruction, subword

1. Introduction

Consider the q-element alphabet Fq = {0, 1, ..., q−1}. In the paper we examine
the elements of the set Fn

q of sequences of length n called words. A subsequence
u of a given word w called subword, with notation u ⊆ w. Consider a given word
w ∈ Fn

q .

Definition 1.1. Let sk(w) = u ∈ F k
q : u ⊆ w, the multiset of all of the

(
n
k

)
sub-

words of w of length k.
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Definition 1.2. Let s∗k(w) = u ∈ F k
q : u ⊆ w, the set of all of the different subwords

of w, of length k.

In other words the set s∗k(w) is the set sk(w) without multiplicities. Here is a
simple example to show the difference between sk and s∗k.

Example 1.1. Let w = 00011. Then s4(w) = {0011, 0011, 0011, 0001, 0001} and
s∗4(w) = {0011, 0001}

There is two type of the reconstruction problem: for a given word w of length n
what is the smallest k, such that we can reconstruct w from the set sk(w) or from
the set s∗k(w). In Section 2 we give a short overview concerning the known results
of this problem.

It is relatively easy to prove (see [3]), that s∗n−1(w) is enough for the reconstruc-
tion. Using this result, Erdős, Sziklai and Torney [3] determined the automorphism
group of the partially ordered set (or poset) containing all words of length at most
n over a q-letter alphabet. Similarly, we consider two other posets and determine
their automorphism groups.

Let um,n denote the word a1...an where m ≥ 2, a1 = 0 and ai+1 ≡ ai + 1 mod
(m), ie. for n ≡ l mod (m)

um,n = 012...(m− 1)012...(m− 1)...012...(l − 1)

furthermore, let Bm,n denote the set of all subsequences of um,n partially ordered
by the subsequence relation. This is a notable word: among the n-long words over
the m-element alphabet, um,n has maximum number of subwords. Burosch et al.
[2] determined Aut(Bm,n) by algebraic way, in Section 3 using the result of [3] we
give a significantly shorter proof of the theorem of Burosch et al.

In Section 4 we consider the well known DNA-words and we define a new type
of the reconstruction problem. Let Γ = {i, ī : i = 0, 1, .., q − 1} be an alphabet
of q pairs of symbols (called complement pairs); and denote by Γn the set of all
sequences of length n over the alphabet Γ. The elements of Γn are called DNA-
words. Define ¯̄i = i for all i and for a word w = w1w2...wn ∈ Γn let w∗ = w̄n...w̄1

be the reverse complement of w. Note that (w∗)∗ = w.
Denote g ≺ f if g is a subword of either f or f̃ (we will see that this is the good

formalization because of the reverse complementarity). Let d∗m(f) denote the set
of all words g of length at most m which g ≺ f . The DNA reconstruction problem
is the following: for a given DNA-word f of length n what is the smallest m such
that we can reconstruct f from the set d∗m(f)? We prove in a simple way that
d∗n−1(f) is enough to the reconstruction.

LetDq,n denote the poset of all DNA-words of length at most n over an alphabet
of q complement pairs, partially ordered by the ≺ relation. As an application of
the previous results we determine Aut(Dq,n).
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2. Known results

2.1. Reconstruction from the multiset sk(w)

The original problem was first considered by Kalashnik in 1973: for an arbitrary
word w of length n, what is the smallest k such that we can reconstruct w from
sk(w), i.e. from the multiset of its

(
n
k

)
subwords of length k?

An upper bound for k was find independently by Leon’tev and Smetanin [5]
and Manvel et al [9]. Furthermore in [9] the authors find a lower bound too:

Theorem 2.1. We can reconstruct w from sk(w) for k ≥ n
2 and for k < log2 n we

can not.

In these papers the authors use some simple combinatorial ideas and show lot
of examples.

Later Krasikov and Roditty [4] found an essentially better upper bound in the
following way: they proved that if for w 6= v sk(w) = sk(v), then for some s the
system

ah1 + ah2 + ..+ ahs = bh1 + bh2 + ..+ bhs , h = 1, .., k − 1

a1 < a2 < .. < as, b1 < b2 < .. < bs

has a nontrivial solution with ai, bi ∈ [0, n− 1].
This is the Prouchet-Tarry-Escott problem of classical Diophantine analisys.

Recently Borwein, Erdélyi and Kós [1] proved that this system has only trivial
solutions whenever k ≥ b 16

7

√
nc. This yields the following:

Theorem 2.2. We can reconstruct w from sk(w) for k ≥ b 16
7

√
nc.

However the precise upper bound for k is still an open problem.

2.2. Reconstruction from the multiset s∗k(w)

The second type of the reconstruction problem is the following: for a given word
w of length n what is the smallest k such that we can reconstruct w from s∗k(w),
i.e. from the set of its different subwords of length k. The following result was
proved independently by Levenshtein [6] and Lothaire [8]:

Theorem 2.3. We can reconstruct w from s∗k(w) for k ≥ bn−1
2 c.

Contrast with the previous problem this result is sharp:

Example 2.1. Consider the periodic words u = 0101..01 and v = 1010..10 of
length 2n. It is easy to see, that

s∗n(u) = s∗n(v) = Fn
2

ie. all the binary words of length n.
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In our proofs we use the following very weak version of Theorem 2.3 proved by
Erdős, Sziklai and Torney [3] by constructive way:

Lemma 2.1. If 3 ≤ n then every word w of length n is uniquely determined by
s∗n−1(w) i.e. its (n− 1)-subwords.

3. A short proof of the theorem of Burosch et al.

Before the theorem let’s see some remarks. It is clear, that the levels of the
poset are invariant under an automorphism. Also homogeneity (i.e. all letters of
the word are the same) and total inhomogeneity (i.e. all the letters of the word are
different) are kept by every automorphism.

The basic idea of our proof is the following: we consider the action of an arbi-
trary automorphism on the first two levels of the poset. If an automorphism fixes
these levels, then inductively, because of Lemma 2.1, it is the identity on the whole
poset. Then it is enough to examine the automorphisms on the letters and on the
two-letter subwords. The theorem was first proved by Burosch et al [2]:

Theorem 3.1. (i) if 1 ≤ n ≤ m, then Aut(Bm,n) = Symn;
(ii) if m+ 1 ≤ n ≤ 2m− 1, then Aut(Bm,n) = Z2 ⊗ Sym2m−n;
(iii) if 2m ≤ n, then Aut(Bm,n) = Z2.

We give here a short presentation of our train of thought, for proofs and more
see Ligeti and Sziklai [7].
(i) Now um,n = 012..(n − 1), i.e. it is a total inhomogeneous word. Take an
arbitrary automorphism σ0 ∈ Aut(Bm,n), and consider its action on the first level
of the poset. Thus, this is a permutation π on {0, 1, 2, .., n−1}, take its inverse π−1.
This permutation induces an automorphism σπ−1 on the poset. Let σ1 = σ0σπ−1 .
Then σ1 fixes all of the letters. Furthermore, σ1 fixes all sequences of form ij where
i < j because σ1(ij) 6= (ji) as ji is not a subword of um,n. Then σ1 is the identity
on the two lowest levels of the poset and, by Lemma 2.1, on the whole poset.
(ii) In this case um,n = 01...(m−1)01...(k−1) where n = m+k, 1 ≤ k ≤ m−1 and
let σ0 be an arbitrary automorphism. We prove that we have strong restrictions
for the images of the letters 0, 1, ..., k − 1, but we are free to choose the images of
the remaining 2m− n letters (this yields the factor Sym2m−n).

Remark 3.1. Let e be an element of the third level of the poset such that e
contains the letters i, j only and suppose that ii is a subword of e. Then we can
read from the poset whether j is the middle letter or not.

In that case e = iij, jii, or iji. The first two words have two subwords of length
two, but the third word has three.

Remark 3.2. Let j1 < j2 ≤ k − 1 and i ≤ k − 1, i 6= j1, j2, then we can tell
the difference between the j1iij2-type subwords and the j1j2ii-type or iij1j2-type
subwords in the poset.
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From these remarks we get the following:

Lemma 3.1. For i = 0, 1, 2, .., k − 1 the image of the letter i is i or (k − i− 1) by
any automorphism.

Now we define a mapping ρ: given a word w = x1x2...xsy1y2...ytz1z2...zu, where
0 ≤ xi, zi ≤ k − 1; k ≤ yi ≤ m− 1; let

ρ(w) = zuzu−1...z1y1y2...ytxsxs−1...x1.

Let ν be the mapping that changes all the letters i (0 ≤ i ≤ k − 1) for k − 1− i in
each word (and does not changes the letters j for k ≤ j ≤ m− 1). Clearly neither
ρ nor ν is an automorphism but ρν is an involution in Aut(Bm,n).

Now let σ0 be an arbitrary automorphism, and consider its action on the letters
k, ...,m− 1, this induces a permutation π on these letters (still on the first level),
take its inverse π−1. This permutation induces an automorphism σπ−1 on the poset.
Let σ1 = σ0σπ−1 . Then σ1 is the identity on the letters k, ...,m− 1 and, as above,
σ1 fixes all sequences of form ij where k ≤ i < j. Finally, if σ1(0) = (k − 1) then
let σ = ρνσ1 where and if σ1(0) = 0 then let σ = σ1. Hence σ(0) = 0.

Lemma 3.2. If an automorphism fixes 0 then it fixes the two lowest levels of the
poset.

Now by Lemma 2.1 and Lemma 3.2 we get the part (ii) of Theorem 3.1.
(iii) Now the word is of the following

um,n = 012..(m− 1)012..(m− 1)..012..(l − 1)

for n ≡ l mod (m). The Lemma 3.1 is clearly true here, furthermore

Lemma 3.3. For the letters k ≤ j ≤ m − 1 the image of the letter j is j or
(k+m-j-1).

Now let’s describe the involutory automorphism ofBm,n. Let σ∗ be the mapping
that reverses all the words, and let νk,m be the mapping that changes the letters
in the words in the following way: for 0 ≤ i ≤ k − 1 the letter i is changed for
k− 1− i, and for k ≤ j ≤ m− 1 the letter j is changed for (m+ k− 1− j). Clearly
neither σ∗ nor νk,m is an automorphism of Bm,n, but σ∗νk,m ∈ Aut(Bm,n).

Now let σ0 be an arbitrary automorphism, furthermore let σ be σ∗νk,mσ0 if
σ0(0) = (k − 1) and let σ be σ0 if σ0(0) = 0. Now σ(0) = 0. Similarly to part (ii),
Lemma 3.2 is true which proves the Theorem 3.1.

4. The DNA reconstruction

The motivation of this analysis is coming from the biology: based on some
basic properties of DNA strands we can build a mathematical model, which is easy
to handle. DNA is composed of units called nucleotides : A,C,G and T, these
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letters are the elements of the alphabet. The letters form two complement pairs:
A-T and C-G. Furthermore, DNA is double-stranded, i.e. each sequence occurs
together with its reverse complement (we get the reverse complement in two steps:
replacing each letter by its complement and reverse this sequence). For example
the reverse complement of AACCGT is ACGGTT.

We can generalize the above properties for q complement pairs, and consider a
reconstruction problem (see Section 1). It is easy to see that it makes no difference
how many complement pairs build up the DNA-word.

Lemma 4.1. We can solve a reconstruction problem of all DNA strands over an
alphabet with q complement pairs iff we can do it for the similar problem for q = 2,
i.e. iff we can reconstruct all DNA strands over the alphabet {{A, T}, {C,G}}.

It is clear that if we can reconstruct all strands over an alphabet with k com-
plement pairs, then we can reconstruct them over ACGT. Conversely, suppose that
we can reconstruct all strands over ACGT. Then replace the first complement pair
with A-T, and all the others with C-G. Now we can reconstruct the strand, and so
we find the places of letters from the first complement pair in the original strand
(now A-T-s are there); then we can repeat the procedure in order to find the other
complement pairs.

Using this, similar to Lemma 2.1 we proved the following :

Lemma 4.2. If 3 ≤ n then every DNA-word f of length n is uniquely determined
by d∗n−1(f).

Now we can determine Aut(Dq,n). We can see easily two types of automor-
phisms without proof: a permutation π ∈ Symq on the complement pairs induces
an automorphism σπ on Dq,n. Denote also by Symq the automorphism group gen-
erated by these σπ-s. Furthermore, consider a map which interchanges the elements
of the i-th complement pair. This induces an automorphism σ∗

i on Dq,n. Denote
by Z2 the automorphism group generated by σ∗

i . Surprisingly in most cases there
are no more automorphisms (note that the automorphism that reverse the order
of the letters, which is a natural one, is σ∗

1σ
∗
2 ...σ

∗
k; e.g. σ∗

1σ
∗
2(ab) = āb̄, which is

identified to its reverse complement, i.e. ba).

Theorem 4.1. (i) if n = 1, then Aut(Dq,n) = Symq;

(ii) if n = 2, then Aut(Dq,n) = Symq ⊗ Symq
3 ⊗ Sym

(q2)
4 ;

(iii) if n ≥ 3, then Aut(Dq,n) = Symq ⊗ Zq
2 .

The proof of the theorem is similar to Theorem 3.1: if an automorphism fixes
the two lowest levels of the poset, then because of Lemma 4.2 it is the identity
on the whole poset (we can apply Lemma 4.2 only for n ≥ 3). The case n = 1 is
considered only for the sake of completeness. In (ii) the poset has only two levels.
It is clear that an automorphism transfers complement pairs to complement pairs.
Take an arbitrary automorphism σ0 ∈ Aut(Dq,n) and consider its action on the set
of complement pairs. Thus, this is a permutation on q elements, take its inverse
π−1. This permutation induces an automorphism σπ−1 on the poset Dq,n. Let
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σ1 = σ0σπ−1 . Then σ1 fixes all of the complement pairs. Now one can partition
the second level into q+

(
q
2

)
blocks: we have q blocks of size 3 with elements {ii ≡

ī̄i, īi, īi}; and
(
q
2

)
blocks of size 4, with elements {ij ≡ j̄ ī, ij̄ ≡ jī, īj ≡ j̄i, īj̄ ≡ ji}

for all i 6= j, each block is fixed by σ1 (setwise). This means q copies of Sym3 and(
k
2

)
copies of Sym4, and these automorphisms differ and commute, which proves

the second part of the theorem.
In (iii) we can prove easily the following.

Remark 4.1. The automorphism σ1 fixes all sequences in form of ii

To the contrary suppose that σ1(ii) = īi (or equivalently īi). Then we can not
define σ1(iii).

Let σ∗
i be the automorphism which interchanges the elements of the i-th com-

plement pair. Denote σ2 the product of σ1 and those σ∗
i ’s for which σ1(īi) = īi.

Then σ2 fixes all elements in the 3-blocks. Furthermore:

Remark 4.2. The automorphism σ2 fixes all sequences in form of ij for all i 6= j.

Now by Remark 4.1 and Remark 4.2 we have that the two lowest levels of the
poset are fix, which completes the proof.
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