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Abstract

The construction of decision trees is a commonly used and easily applied
way of supervised learning. The aim is the prediction of one or more target
variable on the basis of many predictor variables. This technique divides the
field of predictors along a predictor variable one after another. The goal is
that the target variable should be more and more homogeneous along the
resulting partition. I modified the CART algorithm developed by Breiman et
al. [1], which aims for the minimizing of a concave risk function defined on the
partitions generated by the trees. I improved this algorithm with a stochastic
search on the set of decision trees applying the Markov Chain Monte Carlo
method. It was first proposed in a Bayesian framework by Chipman et al.
[2]. By empirical experience finding the optimal tree this technique is much
more effective than the former deterministic methods.
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1. Introduction

The main problem of the supervised learning is the following. If X = (X1, . . . , Xd)
is the vector of predictor variables, and Y is the target variable, then we are looking
for the function that has values the nearest to Y .

To measure this distance we use the method of least squares:

E(Y − f(X))2 → min, f : X → R.

The solution of this problem is the conditional expectation

π(x) := E(Y |X = x), x ∈ X .
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If the values of Y are discrete, then we speak about classification problem, and
if they are continuous, we speak about regression problem. In this paper we will
concentrate to the case of a binary discrete target variable. These binary valued
discrete problems are also important in our lives. Just think about the case when
a bank must decide whether the costumer is a good debtor or not.

In Section 2 a short overwiev is presented on the decision trees. In Section 3
Metropolis-Hastings algorithm is introduced and applied for decision trees. Section
4 gives some necessary tools to the proof of the main theorem, which remains for
Section 5.

2. Decision trees

There are different methods to construct a decision tree, for example CHAID,
AID, C4.5, and C5 (see [4]). I used the CART algorithm developed by Breiman et
al. [1], which is a deterministic method. Decision trees have many advantages over
the other nonlinear methods, for example their easy interpretation.

Definition 2.1. By a decision tree we mean a pair of T = (T, τ), where T is a
binary tree, and τ : T → {1, . . . , d} × R is a mapping.

If s is a node of the tree, than τ(s) = (k, α), 1 ≤ k ≤ d, α ∈ R, means that we
cut the s node in the kth variable at the α value.

Breiman’s book’s main point is defining a risk function with which we can
measure the goodness of a decision tree. Let’s denote `(T ) the number of the tree’s
leaves, X1, . . . ,X`(T ) the partition of the field of predictor variables defined by the
binary tree. Let ϕ be a concave, symmetric loss function on [0, 1]. Define

vol(Xk) : =

∫

Xk

λ(x)dx,

πk : =
1

vol(Xk)

∫

Xk

π(x)λ(x)dx,

k = 1, . . . , `(T ), where λ is the density function of the predictor variables.

Definition 2.2. A function R : T → [0, 1] is called risk function, if

R(T) :=

`(T )∑

k=1

ϕ(πk)vol(Xk). (1)

The main advantage of risk function of this form is that we can compute it
recursively.

In this case we suppose that λ and πk are known. If we have a sample
{(x1, y1), . . . , (xn, yn)}, than we must estimate vol(Xk) and πk. For example:

v̂ol(Xk) =
1

n

n∑

i=1

I(xi ∈ Xk) π̂k =

∑n
i=1 I(yi = 1,xi ∈ Xk)∑n

i=1 I(xi ∈ Xk)
.
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We get another in practice very important risk function if we punish the too
big trees in direct ratio to the number of their leaves:

Rα(T ) := R(T ) + α`(T ), α > 0. (2)

The ϕ function can be chosen differently, the most often used are misclassifica-
tion, Gini-index and entropy (see [1], Chapter 4). The concaveness of ϕ guarantees
that the risk can be minimized.

3. The Metropolis–Hastings algorithm

There can be cases, when although we always choose the best cut, at the end we
do not get the optimal tree. So the global optimum - as in many other cases - is not
the consequence of the local optimum. That is why I integrated the Metropolis-
Hastings algorithm to find the optimal tree.

Let q(T ′|T ), T, T ′ ∈ T be an arbitrary transition kernel. Define α as the
following:

α(T, T ′) := min

{
1,

π(T ′)q(T |T ′)
π(T )q(T ′|T )

}
, (3)

where the second term of the minimum denotes the Hastings quotient. Create a
Markov chain ξ1, . . . , ξn, . . . . If ξi = T then let

ξi+1 =

{
T ′ with probability α(T, T ′),

T otherwise.

Then π(T ) will be a stationary distribution of the chain (see [9]).
Consider the following very simple case. Let X be a continuous predictor vari-

able with values in the [a, b] interval. Construct the trees with the following tran-
sition probabilities. Denote e the elementary tree, i.e. e is a tree with two leaves.
Let’s denote T → T ′ that T ′ can be reached from T with adding an elementary
tree or deleting the last added elementary tree. Suppose that all these cases have
the same probability 1/(`(T ) + 1). We can now define the transition probabilities
of the Metropolis-Hastings algorithm as the following:

q(T ′|T ) =
{
(`(T ) + 1)−1, if T → T ′,

0, otherwise.

4. General state space Markov chains

We should prove that the Markov chain constructed in Section 3 converges to
the unique stationary distribution π(T ), and the convergence is as fast as possible.
Here I explain just the tools we will need later, all the other definitions and proofs
can be found in the book of Meyn and Tweedie [6].
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Let (E, E) be a measurable space, where E is an abstract set and E is a countably
generated sigma algebra. The distribution of a time-homogenous Markov chain
{ξn, n ∈ N} on the state-space E is specified by its initial distribution and its
transition kernel P (x,A).

Definition 4.1. An ergodic Markov chain with invariant distribution π is geomet-
rically ergodic if there exists a function M : E → R+ such that

∫
E
M(x)π(dx) < ∞

and a positive constant r < 1 such that

‖Pn(x, ·)− π(·)‖ ≤ M(x)rn

for all x ∈ E and n ∈ N.

Theorem 4.1. Suppose that an ergodic Markov chain has the property that for a
function V : E → [1,∞), some constant β > 0 and b < ∞ and a small set C ⊂ E

PV (x)− V (x) ≤ −βV (x) + bIC(x)

for all x ∈ E. Then the chain is geometrically ergodic.

5. Risk fuction with penalty

Define now the target invariant distribution πα as the following:

πα(T ) = exp{−(R(T ) + α`(T ))}, T ∈ T.

So by using the risk function with penalty, although that by growing the tree the
risk gets lower and lower, the optimal tree will be finite.

We use this fuction instead of the one suggested by Breiman et al., because so
we are to find the tree with the greatest probability (in the other case we should
have found the tree with lowest probability).

We can give a distribution on the set of decision trees in direct ratio to πα. To
this first we need the number of binary trees with ` leaves (see Cormen et al. [3]):

bl ≈
1

4
√
π

4l

l3/2
.

We need:
∑

T

πα(T ) < ∞.

One can see that πα can be normalized to be a distribution, if and only if α >
ln 4. Because this normalizing factor disappears in the definition of the Hastings
quotient, we are going to speak about the πα distribution. Let q be defined as in
Section 3.
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By the definition of πα and q we get that the Hastings quotient is:

h(T, T ′) = exp{−(R(T )−R(T ′))} ·





e−α `(T ) + 2

`(T ) + 1
, if T ′ = T ∪s e,

eα
`(T )

`(T ) + 1
, if T ′ = T\se.

We can state the main theorem.

Theorem 5.1. The ξ1, ξ2, . . . Markov chain defined by the MH algorithm is geo-
metrically ergodic on the set of binary trees with πα stationary distribution, i.e. the
chain converges exponentially to the stationary distribution for all α > ln 4.

Proof. First we prove the ergodicity. It can be made using the definition of
irreducibility, strong aperiodicity and Harris recurrence.

Then we construct a suitable energy function V with that the drift criterion of
Theorem 4.1 is satisfied. Search the V function in the following form:

V (T ) =
∑

s∈leaves

f(T, s),

i.e. let V be the sum of the values given to the leaves of the tree.
If the T tree has enough leaves then the πα function doesn’t change very much

after adding an elementary tree to T . So πα(T
′)/πα(T ) is near to 1. So the Hastings

quotient is between κ and 1, where κ is a constant, and for great trees it is about
e−α. In that case when we remove the last added elementary tree, the Hasting
quotient is greater than 1, so α(T, T ′) = 1. So we get

PV (T )− V (T ) =
1

`(T ) + 1

∑

T ′=T∪e

h(T, T ′)(V (T ′)− V (T ))+

+
1

`(T ) + 1
(V (T\e)− V (T )).

If V is bounded than the second term is small when the number of leaves is great
enough. For the first term we have:

`(T )− 1

`(T ) + 1

∑

s∈T̃

h(T, T ∪ e)f(T, s)

[
f(T ∪ e, s)

f(T, s)
− 1

]
+

+
1

`(T ) + 1

∑

s∈T̃

h(T, T ∪s e)f(T, s)

[
f(T ∪s e, sB) + f(T ∪s e, sJ )

f(T, s)
− 1

]
, (4)

where sB and sJ are those leaves of the tree T ∪s e which were the leaves of
the last added elementary tree. From this we can see that we should choose the
f(T ∪ e, s)/f(T, s) quotient suitable.
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Define the V function recursively. Let f be 1 on the leaves of the elementary
tree. If we have defined V for a tree T than to T ∪ e define the following: Every
value of leaves they stay after the addition let be multiplied by γ ∈ (0, 1), and to
the new leaves give 1. By pruning we get the following state back. On Figure 1 we
can see the recursion of V.

1 1

1 1

1 1

γ

γ

γ2

Figure 1: The recursion of the V function

It’s easy to see, that V (T ) > 1 for all tree, and V is bounded on the set of
binary trees since V (T ) < 2/(1− γ). The second term of expression (4) tends to 0
if the number of the leaves tends to infinity. With multiplying by −1 we get

`(T )− 1

`(T ) + 1

∑

s∈T̃

h(T, T ∪ e)f(T, s)(1− γ) ≥ κ(1− γ)

3
V (T ),

if the tree has minimally two leaves. So for trees having sufficiently large number
of leaves the drift criterion is satisfied with β = κ(1− γ)/3. The trees having less
leaves than a given number form a small set. Thus the proof is finished.

6. Continuous predictor variables

Suppose now that the (X1, . . . , Xd) predictor variables are continuous, that is
the λ(x) = (λ1(x1), . . . , λd(xd)) density function exists. Consider the case of the
punished risk function. As before we can see that πα can be normalized to be a
density. Now define q by the following way:

q(T ′|T ) =





λj(x)

(`(T ) + 1)d
, if T ′ = T ∪s e, τ

′(s) = (j, x);

1

`(T ) + 1
, if T ′ = T\se;

0, otherwise,
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where τ defined according to the Definition 2.1., and we choose from the possibilities
with equal probability. We can state the following theorem.

Theorem 6.1. Suppose that the density functions λj , j = 1, . . . , d, of the predictor
variables are continuous. Then the Markov chain ξ1, ξ2, . . . with the above defined
transition kernels on the set of decision trees is geometrically ergodic with stationary
distribution πα, for all α > ln 4.

The proof is similar to the discrete case.

7. Discussion

The method suggested by Breiman et al. is not always effective and fast enough.
So I integrated stochastic search to find the optimal tree. I gave the transition
kernels in different cases and proved the geometric ergodicity of the Markov chains
constructed this way.

It would be important to construct the chain when we have just a sample, and
see how much the estimated tree differs from the theoretical one. Other questions
are the mixing rates, i.e. how fast we get to the stationary distribution.
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